Citation: | YANG Wen, GENG Shaoning, JIANG Ping, HAN Chu, GU Shiyuan. Process control of the porosity defects in high power oscillating laser welding of medium-thick aluminum alloy plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 26-33. DOI: 10.12073/j.hjxb.20210528001 |
Heinz A, Haszler A, Keidel C, et al. Recent development in aluminum alloys for aerospace applications[J]. Materials Science & Engineering A, Structural Materials:Properties, Microstructure and Processing, 2000, 280(1): 102 − 107.
|
Gao X, You D, Katayama S. Seam tracking monitoring based on adaptive kalman filter embedded elman neural network during high-power fiber laser welding[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4315 − 4325.
|
Zhang Y, Liu T, Li B, et al. Simultaneous monitoring of penetration status and joint tracking during laser keyhole welding[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(4): 1732 − 1742.
|
Xu J, Rong Y, Huang Y, et al. Keyhole-induced porosity formation during laser welding[J]. Journal of Materials Processing Technology, 2018, 252: 720 − 727.
|
Barbieri G, Cognini F, Moncada M, et al. Welding of automotive aluminum alloys by laser wobbling processing[J]. Materials Science Forum, 2016, 879: 1057 − 1062.
|
包刚, 彭云, 陈武柱, 等. 超细晶粒钢光束摆动激光焊接的研究[J]. 应用激光, 2002(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032
Bao Gang, Peng Yun, Chen Wuzhu, et al. Study on laser welding of ultra - fine grained steel with weaving beam[J]. Appled Laser, 2002(2): 203 − 205. doi: 10.3969/j.issn.1000-372X.2002.02.032
|
赵琳, 张旭东, 陈武柱, 等. 光束摆动法减小激光焊接气孔倾向[J]. 焊接学报, 2004, 25(1): 29 − 32. doi: 10.3321/j.issn:0253-360X.2004.01.008
Zhao Lin, Zhang Xudong, Chen Wuzhu, et al. Beam swing method to reduce the tendency of laser welding porosity[J]. Transactions of the China Welding Institution, 2004, 25(1): 29 − 32. doi: 10.3321/j.issn:0253-360X.2004.01.008
|
Chen G, Wang B, Mao S, et al. Research on the “∞”-shaped laser scanning welding process for aluminum alloy[J]. Optics & Laser Technology, 2019, 115: 32 − 41.
|
黄瑞生, 邹吉鹏, 孟圣昊, 等. 铝合金激光扫描焊接工艺特性[J]. 焊接学报, 2019, 40(4): 61 − 66. doi: 10.12073/j.hjxb.2019400101
Huang Ruisheng, Zou Jipeng, Meng Shenghao, et al. Dynam- ic behavior of laser scanning welding pool and plasma[J]. Transactions of the China Welding Institution, 2019, 40(4): 61 − 66. doi: 10.12073/j.hjxb.2019400101
|
陈武柱. 激光焊接与切割质量控制[M]. 北京: 机械工业出版社, 2010.
Chen Wuzhu. Laser welding and cutting quality control[M]. Beijing: China Machine Press, 2010.
|
Lin R, Wang H, Lu F, et al. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys[J]. International Journal of Heat and Mass Transfer, 2017, 108: 244 − 256. doi: 10.1016/j.ijheatmasstransfer.2016.12.019
|
Wang L, Gao M, Zeng X. Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminum alloy[J]. Science and Technology of Welding and Joining, 2019, 24(4): 334 − 341. doi: 10.1080/13621718.2018.1551853
|
[1] | JI Xinghong, LIANG Zhaofeng, ZHANG Gerui, LU Hao, ZHANG Liang, YUAN Bo. Effect of ultrasonic spinning with welding on the microstructure and mechanical properties of 7075 aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 36-42. DOI: 10.12073/j.hjxb.20231212004 |
[2] | LUO Jingyue, LI Xiaobo, LIU Xiaochao, SHI Lei, SHEN Zhikang, PEI Xianjun, NI Zhonghua. Effect of tool rotation speed on microstructure and mechanical properties of Al/steel vortex flow-based friction stir lap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 127-135. DOI: 10.12073/j.hjxb.20240906002 |
[3] | CHEN Chao, SUN Guorui, FENG Tianting, FAN Chenglei, ZHANG Huijing. Microstructure and mechanical properties of aluminium alloy thin-wall parts in wire arc additive manufacturing hybrid interlayer high-speed friction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 38-43. DOI: 10.12073/j.hjxb.20220121001 |
[4] | DAI Xiang, SHI Lei, WU Chuansong, JIANG Yuanning, GAO Song, FU Li. Microstructure and mechanical properties of 2195-T6 Al–Li alloy joint prepared by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 25-34. DOI: 10.12073/j.hjxb.20210524002 |
[5] | LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001 |
[6] | WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002 |
[7] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[8] | XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54. |
[9] | YANG Yang, CHEN Zhongping, LI Dahe, LIU Xiaohui. Microstructure and mechanical properties of Monel alloy copper explosive clad interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 53-56. |
[10] | SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108. |