Advanced Search
JI Xinghong, LIANG Zhaofeng, ZHANG Gerui, LU Hao, ZHANG Liang, YUAN Bo. Effect of ultrasonic spinning with welding on the microstructure and mechanical properties of 7075 aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 36-42. DOI: 10.12073/j.hjxb.20231212004
Citation: JI Xinghong, LIANG Zhaofeng, ZHANG Gerui, LU Hao, ZHANG Liang, YUAN Bo. Effect of ultrasonic spinning with welding on the microstructure and mechanical properties of 7075 aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 36-42. DOI: 10.12073/j.hjxb.20231212004

Effect of ultrasonic spinning with welding on the microstructure and mechanical properties of 7075 aluminum alloy welded joints

More Information
  • Received Date: December 11, 2023
  • Available Online: March 02, 2025
  • The ultrasonic spinning with welding method is a novel approach combining mechanical force field and ultrasonic energy field to control welding deformation of thin-walled components during welding. Its core lies in applying ultrasonic spinning within the specific plastic recovery temperature range behind the molten pool during the welding process, which generates high-frequency ultrasonic vibration in the workpiece while inducing plastic deformation of high-temperature metal through high-speed rotation of the concentrator. Through the combined action of ultrasonic vibration and rotational compression, this method extends the shrinkage deformation of solidified metal, refines grain size, achieving control of welding deformation, improvement of welded joint microstructure, and enhancement of mechanical properties. An ultrasonic spinning with welding platform was designed and constructed, and relevant welding experiments were conducted on 7075 aluminum alloy. The relationship between deformation control effectiveness and torch-concentrator distance was obtained, while microstructural and mechanical property analyses were performed on the welded joints. Electron back scatter diffraction (EBSD) results demonstrate that the weld zone of 7075 aluminum alloy processed by this method exhibits significant grain refinement, with average grain size decreasing from 60 μm to 46.8 μm, accompanied by reduced columnar crystal quantity and increased equiaxed crystal quantity. The welded joints obtained through this method show improved hardness and tensile strength, with average weld zone hardness increasing from 109.7 HV to 128 HV, and tensile strength rising from 294.71 MPa to 324.64 MPa.

  • [1]
    Yan F, Wang X, Chai F, et al. Improvement of microstructure and performance for steel/Al welds produced by magnetic field assisted laser welding[J]. Optics and Laser Technology, 2019, 113: 164 − 170.
    [2]
    Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallur-gy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945 − 983.
    [3]
    Sun Z, Zheng L, Yang H. Softening mechanism and micros tructure evolution of as extruded 7075 aluminum alloy during hot deformation[J]. Materials Characterization, 2014, 90: 71 − 80.
    [4]
    Oropeza D, Hofmann D C, Williams K, et al. Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire[J]. Journal of Alloys and Compounds, 2020, 834: 154987.
    [5]
    Dai W L. Effects of high intensity ultrasonic wave emission on the weldability of aluminum alloy 7075-T6[J]. Materials Letters, 2003, 57(16-17): 2447 − 2454.
    [6]
    Li Z M, Zhu Y L, Du X K, et al. Microstructures and mechanical properties of 2024 aluminum alloy welded joint after ultrasonic peening treatment[J]. Rare Metal Materials and Engineering, 2012, 41: 307 − 311. doi: 10.1016/S1875-5372(12)60020-4
    [7]
    Li J, Yang J G, Yan D J, et al. Rotating extrusion technique and its effect on quality of aluminum alloy thinplate weldments[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2): 183 − 188.
    [8]
    王鹏博. 7075铝合金超声辅助TIG焊接工艺及机理研究[D]. 沈阳:沈阳工业大学, 2019.

    Wang Pengbo. Research on ultrasonic assisted TIG welding process and mechanism of 7075 aluminum alloy [D]. Shenyang: Shenyang University of Technology, 2019.
    [9]
    李锐峰, 陈芙蓉. 超声功率对7075铝合金CMT焊接接头的组织与性能的影响[J]. 稀有金属材料与工程, 2023, 52(1): 274 − 282. doi: 10.12442/j.issn.1002-185X.20211105

    Li Ruifeng, Chen Furong. The Influence of ultrasonic power on the microstructure and properties of 7075 aluminum alloy CMT welded joints[J]. Rare Metal Materials and Engineering, 2023, 52(1): 274 − 282. doi: 10.12442/j.issn.1002-185X.20211105
    [10]
    Chen Q, Lin S, Yang C, et al. Effect of ultrasonic impact on the microstructure of welded joint of 2195 Al-Li alloy[J]. Acta Metallurgica Sinica English Letters, 2016, 29(4): 367 − 372.
    [11]
    Chen Q, Ge H, Yang C, et al. Study on poresin ultrasonic-assisted TIG weld of aluminum alloy[J]. Metals, 2017, 7(2): 53.
    [12]
    李军, 杨建国, 翁路露, 等. 用旋转挤压方法控制薄板的焊接变形[J]. 焊接学报, 2008, 29(11): 25 − 28. doi: 10.3321/j.issn:0253-360X.2008.11.007

    Li Jun, Yang Jianguo, Weng Lulu, et al. Control of welding deformation of thin plate by rotary compression method[J]. Transactionsof the China Welding Institution, 2008, 29(11): 25 − 28. doi: 10.3321/j.issn:0253-360X.2008.11.007
    [13]
    杨建国, 范成磊, 方洪渊. 随焊冲击碾压控制焊接应力变形新方法[J]. 机械工程学报, 2004(8): 87 − 90.

    Yang Jianguo, Fan Chenglei, Fang Hongyuan. A new method of controlling welding stress and deformation by welding impact Rolling[J]. Journal of Mechanical Engineering, 2004(8): 87 − 90.
    [14]
    刘雪松, 徐文立, 方洪渊. 钛合金薄板焊接应力的随焊锤击控制[J]. 焊接学报, 2004, 25(2): 84 − 86.

    Liu Xuesong, Xu Wenli, Fang Hongyuan. Control of welding stress in thin titanium alloy plates by welding hammer impact[J]. Transactionsof the China Welding Institution, 2004, 25(2): 84 − 86.
    [15]
    Ma M, Lai R, Qin J, et al. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: Experiments and numerical simulations[J]. International Journal of Fatigue, 2021, 144: 106046.
    [16]
    Wang G, Li Q, Li Y, et al. Effects of weld reinforcement on tensile behavior and mechanical properties of 2219-T87 aluminum alloy TIG welded joints[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 10 − 16.
    [17]
    Komarov S, Yamamoto T, Sun J. Fabrication of Al-Bi frozen emulsion alloys due to high intense ultrasound irradiation[J]. Journal of Alloys and Compounds, 2021, 859: 1582311.
    [18]
    Liu X, Osawa Y, Takamori S, et al. Grain refinement of A-Z91 alloy by introducing ultrasonic vibration during solidifi-cation[J]. Materials Letters, 2008, 62(17): 2872 − 2875.
    [19]
    Cai X, Lin S, Wang X, et al. Characteristics of periodic ult-rasonic assisted TIG welding for 2219 aluminum alloys[J]. Materials, 2019, 12(24): 11.
    [20]
    Balasubramani N, Wang G, Stjohn D H, et al. Current understanding of the origin of equiaxed grains inpuremetals duri-ng ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric current pulse techniques[J]. Journal of Materi-als Science & Technology, 2021, 65: 38 − 53.
    [21]
    Jamshidi R, Rossi D, Saffari N, et al. Investigation of the effect of ultrasound parameters on continuous sonocrystallization in a millifluidic device[J]. Crystal Growth & Design, 2016, 16(8): 4607 − 4619.
    [22]
    Ashiri R, Niroumand B, Karimzadeh F. Physical, mechanical and dry sliding wear properties of an Al-Si-Mg-Ni-Cu allo-y under different processing conditions[J]. Journal of Alloys and Compounds, 2014, 582: 213 − 222.
    [23]
    Wang J T, Chen J W, Zhang Y K, et al. Influence of ultra sonic impact treatment on stress corrosion of 7075 aluminum alloy and its welded joints[J]. Engineering Failure Analysis, 2023, 144: 106908.
  • Related Articles

    [1]WANG Zejie, SONG Gang, LIU Liming. Microstructure and mechanical properties of 7075-T6 aluminum alloy joint by welding with reinforcement rolling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 1-8. DOI: 10.12073/j.hjxb.20231212001
    [2]GAO Wenqiang, XU Fei, MA Xuyi, GUO Luyun, LU Yiting. The effect of heat input on the microstructure and mechanical properties of 7075-T6 ultra-high strength aluminum alloy weld by laser wire filling welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 128-136. DOI: 10.12073/j.hjxb.20231215002
    [3]LI Shuxin, SUN Zhuanping, LIU Xu, WANG Limei, MA Shuai. Microstructure and properties of 7075-T651 aluminum alloy friction plug welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 95-101. DOI: 10.12073/j.hjxb.20220903001
    [4]ZHANG Zehua, LI Xiaoqiang, ZHU Dezhi, QU Shengguan, WANG Xuecheng. Effect of wire current on microstructure and properties of 7075-T6 aluminum alloy joint welded by double-wire pulsed cold metal transition method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 68-77. DOI: 10.12073/j.hjxb.20220703002
    [5]Mingyang ZHANG, Yiming JIANG, Chunming WANG, Qiubao OUYANG, Gaoyang MI. Effect of post-weld heat treatment on microstructure and mechanical properties of laser welded 7075Al alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 13-18. DOI: 10.12073/j.hjxb.20220501002
    [6]GAO Shikang, ZHOU Li, ZHANG Xinmeng, ZHANG Junfeng, LI Gaohui, ZHAO Hongyun. Microstructure and properties of friction stir welded joints for 6061-T6/7075-T6 dissimilar aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 35-42. DOI: 10.12073/j.hjxb.20210616003
    [7]XU Teng, ZHANG Chunzhi, LU Kuanliang, SHANG Xichang, WANG Ning. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 51-59. DOI: 10.12073/j.hjxb.20210212001
    [8]LIU Changjun, LIU Zhengjun, RUAN Xianggang, HE Sizuo, SU Yunhai. Effect of post-weld heat treatment on microstructure and mechanical properties of welded joint of 7075 aluminum alloy by double-pulsed metal inert-gas welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 81-84,88.
    [9]LI Guowei, HAN Yongquan, CHEN Furong, LI Yang. Microstructure and mechanical properties of VPPA welded 7075 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 5-8.
    [10]SUN Huhao, XUE Songbai, FENG Xianmei, LIN Zhongqiang, LI Yang. Microstructure and mechanical properties of weld joint of marine 6082 aluminum alloy By TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 91-94.
  • Cited by

    Periodical cited type(14)

    1. 武震东,黄瑞生,曹浩,韩鹏薄,李林,魏鹏宇. 光束摆动对窄间隙激光横焊焊缝成形及气孔的影响. 焊接. 2025(01): 8-16 .
    2. 董兵天,安子良,陈昊睿,武鹏博,罗玖田,牛董山钰,曹浩. 厚壁钛合金激光填丝焊研究现状及发展趋势. 电焊机. 2025(02): 46-57+69 .
    3. 滕彬,范成磊,徐锴,武鹏博,聂鑫,黄瑞生. 厚板窄间隙焊接技术研究现状与应用进展. 焊接学报. 2024(01): 116-128+136 . 本站查看
    4. 张帅,刘同争,徐志宏,代小光,朱朝晖,高明,郭少锋. 光束质量对铝合金激光焊接效率与良率的影响. 中国激光. 2024(12): 11-19 .
    5. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 .
    6. 韩鹏薄,黄瑞生,孙静涛,李小宇,曹浩. 窄间隙激光填丝焊工艺参数对高强钢焊缝成形及缺陷倾向的影响. 热加工工艺. 2023(21): 32-37+43 .
    7. 李路雨,胡永俊,李风,舒畅. 几种常见合金的激光扫描焊接特性及研究现状. 电焊机. 2022(02): 26-35 .
    8. 徐亦楠,马青军,武鹏博,黄瑞生,杨悦,方乃文. 浅析厚壁金属材料窄间隙激光填丝焊存在的问题. 金属加工(热加工). 2022(08): 42-48 .
    9. 陶武,杨上陆. 铝合金激光焊接技术应用现状与发展趋势. 金属加工(热加工). 2021(02): 1-4 .
    10. 徐楷昕,雷振,黄瑞生,方乃文,曹浩. 摆动工艺对钛合金窄间隙激光填丝焊缝成形及气孔率的影响. 中国激光. 2021(06): 143-151 .
    11. 吴雁,肖礼军,孙士学,唐德高. 激光在铝合金焊接中的应用研究进展. 热加工工艺. 2021(15): 1-5+11 .
    12. 黄瑞生,邹吉鹏,宫建锋,杨义成,梁晓梅. 激光扫描焊接熔池及等离子体动态行为. 焊接学报. 2020(03): 11-16+97 . 本站查看
    13. 孙清洁,李军兆,刘一搏,甄祖阳,靳鹏,李富祥,侯少军,李振锋. 电磁场辅助SUS316L不锈钢扫描激光窄间隙焊接接头成形及组织性能. 中国激光. 2020(10): 73-82 .
    14. 王磊,许雪宗,王克鸿,黄勇,彭勇,杨东青. 中厚板7A52铝合金光纤激光焊接接头组织与性能. 焊接学报. 2020(10): 28-31+37+98-99 . 本站查看

    Other cited types(14)

Catalog

    Article views (40) PDF downloads (21) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return