Advanced Search
GONG Qingtao1, HU Guangxu2, MIAO Yugang1, MENG Mei1, ZHENG Hong3. Numerical analysis of multi-pass welding residual stresses based on processes chain simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 12-16. DOI: 10.12073/j.hjxb.2018390166
Citation: GONG Qingtao1, HU Guangxu2, MIAO Yugang1, MENG Mei1, ZHENG Hong3. Numerical analysis of multi-pass welding residual stresses based on processes chain simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 12-16. DOI: 10.12073/j.hjxb.2018390166

Numerical analysis of multi-pass welding residual stresses based on processes chain simulation

More Information
  • Received Date: March 27, 2018
  • Based on processes chain simulation technology, a gradually added filler element method was applied for modeling multi-pass welding and the simulation was achieved step by step with coupled thermal-mechanical finite element method. A research part of multi-pass welding was simulated by both the chain simulation technology and the traditional method. To compare the two simulations, convergence for the chain simulation technology is better and its results of longitudinal residual stresses are more accuracy. Meanwhile, the stress evolution history under the thermal-mechanical activities of multi-pass welding was analyzed, and the principle of longitudinal stresses changing under multi-thermal cycles was revealed.
  • Choa J R, Lee B Y, Moonb Y H, et al. Investigation of residual stress and post weld heat treatment ofmulti-pass welds by finite element method and experiments[J]. Journal of Materials Processing Technology, 2004, 156:1690-1695
    Elcoate C D, Dennis R J, Bouchard P J, et al. Three dimensional multi-pass repair weld simulations[J]. International Journal of Pressure Vessels and Piping, 2005,82:244-257[DOI: 10.1016/j.ijpvp.2004.08.003]
    Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37:269-277[DOI: 10.1016/j.commatsci.2005.07.007]
    Deng D, Murakawa H, Liang W.Numerical and experimental investigations on welding residual stressin multi-pass butt-welded austenitic stainless steel pipe[J]. Computational Materials Science, 2008, 42:234-244[DOI: 10.1016/j.commatsci.2007.07.009]
    Ram K, Siegele D. 3D modelling of a multi-pass dissimilar tube welding and post weld heattreatment of nickel based alloy and chromium steel[J]. International Journal of Pressure Vessels and Piping, 2010, 87:643-649[DOI: 10.1016/j.ijpvp.2010.08.010]
    Heinze C, Schwenk C, Rethmeier M. Numerical calculation of residual stress development of multi-pass gasmetal arc welding[J]. Journal of Constructional Steel Research, 2012, 72:12-19[DOI: 10.1016/j.jcsr.2011.08.011]
    Suo L, Sendong Ra, Yanbin Z, et al. Numerical investigation of formation mechanism of welding residualstress in P92 steel multi-pass joints[J]. Journal of Materials Processing Technology, 2017, 244:240-252[DOI: 10.1016/j.jmatprotec.2017.01.033]
    Venkata K A, Truman C E, Wimpory R C, et al. Numerical simulation of a three-pass TIG welding using finite elementmethod with validation from measurements[J]. International Journal of Pressure Vessels and Piping, 2017, 1-12.
    陈章兰, 熊云峰, 李宗民. 船用低温高强钢三维多层焊接变形有限元模拟[J]. 焊接学报. 2008. 29(8):109-112 Chen Zhanglan, Xiong Yufeng, Li Zongmin. 3D finite element simulation on distortion distribution in multi-layers welding of EH36[J]. Transactions of the China Welding Institution, 2008. 29(8):109-112.[DOI: 10.3321/j.issn:0253-360X.2008.08.028]
    孙加民, 邓德安, 叶延洪, 等. 用瞬间热源模拟Q390高强钢厚板多层多道焊T形接头的焊接残余应力[J]. 焊接学报. 2016. 37(7):31-38 Sun Jiamin, Deng Dean, Ye Yanhong, et al. Multi-pass welding residual stresses of Q390 high stress steel's T connection struchure of based on[J]. Transactions of the China Welding Institution, 2016. 37(7):31-38.
    胡广旭, 孟梅, 刘冰. 基于后处理再造型的连续制造工艺过程仿真技术[J]. 计算机辅助工程, 2015, 24(2):47-52 Hu Guangxu, Meng Mei, Liu Bing. Simulation technology for continuous manufacturing processbased on post-processing re-modeling[J]. Computer Aided Engineering, 2015, 24(2):47-52
    Afazov S M, Becker A A, Hyde T H. Development of a finite elementdata exchange system for chain simulation of manufacturing processes[J].Advances in Engineering Software, 2012, 47:104-113[DOI: 10.1016/j.advengsoft.2011.12.011]
    胡广旭. 熔化焊热-力耦合智能数值模拟方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
  • Related Articles

    [1]FU Kuijun, GAO Mingze, LENG Xuesong, YAN Junchun, TANG Haoyang. Evolution of microstructure and impact property in welding HAZ of TiNb steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 36-41. DOI: 10.12073/j.hjxb.2019400124
    [2]XIAO Xiaoming, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of heat input on microstructure and properties of weld metal in MAG welding of weathering steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 41-46.
    [3]HE Xiaomei, WANG Yaomian, ZHANG Conghui. Influence of high energy shot peening on microstructure and properties of TC4 welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 40-44.
    [4]QIN Hua, LIU Zhengjun, SU Yunhai, LIN Jinliang. Effect of heat input on microstructure and properties of welded joint of BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 103-106.
    [5]WU Bingzhi, XU Yujun, AN Hongliang, SUN Jingtao. Property and microstructure of deposited metal with high strength wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 53-57.
    [6]QI Yanchang, ZHANG Xiaomu, PENG Yun, TIAN Zhiling. Effect of aging temperature on microstructure and properties of deposited metal for type 15-5PH precipitation hardened stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 105-108.
    [7]WEI Jinshan, QI Yanchang, PENG Yun, TIAN Zhilin. Effect of heat input on the microstructure and properties of weld metal welding in a 800 MPa grade heavy steel plate with narrow gap groove[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 31-34.
    [8]ZHANG Xiaoyong, GAO Huilin, ZHUANG Chuanjing, JI Lingkang. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 29-32.
    [9]LIU Qibin, LI Bin. Microstructure and properties of 65Mn spring steel by laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 105-108.
    [10]YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76.
  • Cited by

    Periodical cited type(8)

    1. 涂文斌,胡志华,邹雨柔,刘冠鹏,王善林,陈玉华. 时效时间和Sb添加对Sn-9Zn-3Bi/Cu焊点界面金属间化合物生长行为的影响. 材料导报. 2025(06): 193-198 .
    2. 涂文斌,吴鸿燕,梅琪,王韩冰,吴吉洋,颜文俊. 添加Sb对Sn-9Zn-3Bi/Cu钎料接头显微组织及力学性能的影响. 电子元件与材料. 2024(09): 1154-1160+1166 .
    3. 任安世,曲松涛,董新华,史清宇,张弓,朱忠言. 氧含量对Sn-9Zn-2.5Bi-1.5In低温波峰焊焊接性能的影响. 焊接学报. 2022(04): 68-73+99+117 . 本站查看
    4. 薛鹏,何鹏,龙伟民,宋闽. 稀土、Ga元素及其协同效应对无铅钎料组织和性能的影响. 焊接学报. 2021(04): 1-19+97 . 本站查看
    5. 刘广柱,岳迪,康宇,谢宏宇,何定金. 纳米Cr颗粒对Sn-Zn-Bi-In/Cu钎焊焊点性能的影响. 材料工程. 2021(11): 163-170 .
    6. 刘广柱,岳迪,康宇,孙建宇. 含Bi、Ga元素的Sn-9Zn低温无铅钎料研究. 热加工工艺. 2021(23): 36-40 .
    7. 孙文栋,龚世良,张弓,史清宇. 氮气气氛下氧含量对Sn-Zn/Cu焊接接头组织的影响及其产业应用. 机械制造文摘(焊接分册). 2020(02): 1-6 .
    8. 李正兵,胡德安,陈益平,程东海,何凯,郭义乐. Fe颗粒对时效过程中SnBi/Cu接头组织及性能影响. 焊接学报. 2020(08): 22-28+98 . 本站查看

    Other cited types(5)

Catalog

    Article views (757) PDF downloads (169) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return