Citation: | XUE Peng, HE Peng, LONG Weimin, SONG Min. Influence of rare earths, Ga element and their synergistic effects on the microstructure and properties of lead-free solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 1-19. DOI: 10.12073/j.hjxb.20200817001 |
Annuar S, Mahmoodian R, Hamdi M, et al. Intermetallic compounds in 3D integrated circuits technology: a brief review[J]. Science & Technology of Advanced Materials, 2017, 18(1): 693 − 703.
|
薛松柏, 王博, 张亮, 等. 中国近十年绿色焊接技术研究进展[J]. 材料导报, 2019, 33(9): 2813 − 2830.
Xue Songbai, Wang Bo, Zhang Liang, et al. Development of green welding technology in China during the past decade[J]. Materials Reports, 2019, 33(9): 2813 − 2830.
|
Tu K N, Liu Y X. Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology[J]. Materials Science and Engineering: R: Reports, 2019, 136: 1 − 12. doi: 10.1016/j.mser.2018.09.002
|
Zhang L, Tu K N. Structure and properties of lead-free solders bearing micro and nano particles[J]. Materials Science and Engineering: R: Reports, 2014, 82: 1 − 32. doi: 10.1016/j.mser.2014.06.001
|
王尚, 田艳红. 微纳连接技术研究进展[J]. 材料科学与工艺, 2017, 25(5): 1 − 5. doi: 10.11951/j.issn.1005-0299.20160464
Wang Shang, Tian Yanhong. The state of art on the micro-joining and nano-joining technologies[J]. Materials Science & Technology, 2017, 25(5): 1 − 5. doi: 10.11951/j.issn.1005-0299.20160464
|
Zhang P, Xue S B, Wang J H. New challenges of miniaturization of electronic devices: Electromigration and thermomigration in lead-free solder joints[J]. Materials & Design, 2020, 192: 108726.
|
Wang J H, Xue S B, Zhang P, et al. The reliability of lead-free solder joint subjected to special environment: a review[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(10): 9065 − 9086. doi: 10.1007/s10854-019-01333-w
|
Zhao M, Zhang L, Liu Z, et al. Structure and properties of Sn-Cu lead-free solders in electronics packaging[J]. Science and Technology of Advanced Materials, 2019, 20(1): 421 − 444. doi: 10.1080/14686996.2019.1591168
|
徐恺恺, 张亮, 孙磊, 等. Sn-Zn钎料的研究进展[J]. 机械工程材料, 2020, 44(6): 1 − 5. doi: 10.11973/jxgccl202006001
Xu Kaikai, Zhang Liang, Sun Lei, et al. Reserach progress on Sn-Zn solder[J]. Materials for Mechanical Engineering, 2020, 44(6): 1 − 5. doi: 10.11973/jxgccl202006001
|
Ren G, Wilding I J, Collins M N. Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections[J]. Journal of Alloys and Compounds, 2016, 665: 251 − 260. doi: 10.1016/j.jallcom.2016.01.006
|
王悔改, 张柯柯, 尹宸翔, 等. 微连接用碳基纳米颗粒增强无铅复合钎料的研究新进展[J]. 材料热处理学报, 2020, 41(3): 15 − 26.
Wang Huigai, Zhang Keke, Yin Chenxiang, et al. Reviews on latest advances in carbon-based nano-particles enhanced lead-free composite solders for electronic micro-connection[J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 15 − 26.
|
樊江磊, 刘占云, 李育文, 等. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774 − 3779. doi: 10.11896/j.issn.1005-023X.2018.21.014
Fan Jianglei, Liu Zhanyun, Li Yuwen, et al. Research progress of micro-alloying Sn-Cu based lead-free solders[J]. Materials Reports, 2018, 32(21): 3774 − 3779. doi: 10.11896/j.issn.1005-023X.2018.21.014
|
Zhu Z, Sun H, Wu F, et al. Comparative study of the microstructure and mechanical strength of tin-copper (Sn0.7Cu) solder modified with silver (Ag) by both alloying and doping methods[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(7): 6835 − 6844. doi: 10.1007/s10854-016-4635-x
|
Liu Y, Zhang H, Sun F L. Solderability of SnBi-nano Cu solder pastes and microstructure of the solder joints[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(3): 2235 − 2241. doi: 10.1007/s10854-015-4016-x
|
孙磊, 陈明和, 谢兰生, 等. 纳米铝颗粒增强Sn1.0Ag0.5Cu钎料性能及机理[J]. 焊接学报, 2018, 39(8): 47 − 50. doi: 10.12073/j.hjxb.2018390199
Sun Lei, Chen Minghe, Xie Lansheng, et al. Properties and mechanism of nano Al particles reinforced Sn1.0Ag0.5Cu solders[J]. Transactions of the China Welding Institution, 2018, 39(8): 47 − 50. doi: 10.12073/j.hjxb.2018390199
|
Wu J, Xue S B, Wang J W, et al. Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn–0.3 Ag–0.7 Cu low-Ag solder[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(9): 7372 − 7387. doi: 10.1007/s10854-018-8727-7
|
Tang Y, Luo S, Li G, et al. Ripening growth kinetics of Cu6Sn5 grains in Sn-3.0 Ag-0.5 Cu-xTiO2/Cu solder joints during the reflow process[J]. Journal of Electronic Packaging, 2018, 140(1): 011003. doi: 10.1115/1.4038861
|
屈敏, 曹天泽, 郑子豪, 等. ZnO纳米颗粒对Cu(Mo)/Sn-3.0Ag-0.5Cu-xZnO焊点界面IMC生长行为的影响[J]. 热加工工艺, 2019, 48(9): 22 − 26.
Qu Min, Cao Tianze, Zheng Zihao, et al. Effect of ZnO Nano-particles on interfacial IMC growth behavior of Cu(Mo)/Sn-3.0Ag-0.5Cu-xZnO solder joints[J]. Hot Working Technology, 2019, 48(9): 22 − 26.
|
Chen G, Peng H, Silberschmidt V V, et al. Performance of Sn–3.0 Ag–0.5 Cu composite solder with TiC reinforcement: physical properties, solderability and microstructural evolution under isothermal ageing[J]. Journal of Alloys and Compounds, 2016, 685: 680 − 689. doi: 10.1016/j.jallcom.2016.05.245
|
Yang L, Song B B, Zhang Y C, et al. Microstructure, interfacial IMC layer and mechanical properties of Cu/Sn-9Zn-xZrC/Cu solder joints[J]. Materials Research Express, 2018, 5(8): 086301. doi: 10.1088/2053-1591/aacd97
|
Zhu Z, Chan Y C, Chen Z, et al. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder[J]. Materials Science and Engineering: A, 2018, 727: 160 − 169. doi: 10.1016/j.msea.2018.05.002
|
范舟, 张坤, 胡敏, 等. 石墨烯纳米片对AgCuTi钎料熔点与润湿性的影响[J]. 焊接学报, 2019, 40(4): 154 − 160. doi: 10.12073/j.hjxb.20170415
Fan zhou, Zhang kun, Hu min, et al. Effect of graphene nanosheets on melting point and wettability of AgCuTi solder[J]. Transactions of the China Welding Institution, 2019, 40(4): 154 − 160. doi: 10.12073/j.hjxb.20170415
|
Ma Z, Belyakov S, Gourlay C. Effects of cobalt on the nucleation and grain refinement of Sn-3Ag-0.5 Cu solders[J]. Journal of Alloys and Compounds, 2016, 682: 326 − 337. doi: 10.1016/j.jallcom.2016.04.265
|
Gain A K, Zhang L. Interfacial microstructure, wettability and material properties of nickel (Ni) nanoparticle doped tin–bismuth–silver (Sn–Bi–Ag) solder on copper (Cu) substrate[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3982 − 3994. doi: 10.1007/s10854-015-4252-0
|
Li X Z, Ma Y, Zhou W, et al. Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys[J]. Materials Science and Engineering: A, 2017, 684: 328 − 334. doi: 10.1016/j.msea.2016.12.089
|
Li Y, Chan Y C. Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi–Ag composite solders[J]. Journal of Alloys and Compounds, 2015, 645: 566 − 576. doi: 10.1016/j.jallcom.2015.05.023
|
葛进国, 杨莉, 宋兵兵, 等. Cu/Sn-58Bi-xCe/Cu钎焊接头基体组织和力学性能的研究[J]. 热加工工艺, 2016, 45(11): 239 − 241.
Ge Jinguo, Yang Li, Song Bingbing, et al. Investigation on microstructure and mechanical properties of Cu/Sn-58Bi-xCe/Cu solder joints[J]. Hot Working Technology, 2016, 45(11): 239 − 241.
|
Aamir M, Tolouei-Rad M, Din I U, et al. Performance of SAC305 and SAC305-0.4 La lead free electronic solders at high temperature[J]. Soldering & Surface Mount Technology, 2019, 31(4): 250.
|
韩翼龙, 薛松柏, 薛鹏, 等. Pr, Nd对Sn0.3Ag0.7Cu0.5Ga无铅钎料显微组织的影响[J]. 焊接学报, 2017, 38(1): 103 − 106.
Han Yilong, Xue Songbai, Xue Peng, et al. Effects of rare earth element Pr and Nd on microstructure of Sn-0.3Ag-0.7Cu-0.5Ga lead-free solder[J]. Transactions of the China Welding Institution, 2017, 38(1): 103 − 106.
|
Hasnine M, Bozack M J. Effects of Ga additives on the thermal and wetting performance of Sn-0.7Cu solder[J]. Journal of Electronic Materials, 2019, 48(6): 3970 − 3978. doi: 10.1007/s11664-019-07171-0
|
Tian S, Li S P, Zhou J, et al. Thermodynamic characteristics, microstructure and mechanical properties of Sn-0.7 Cu-xIn lead-free solder alloy[J]. Journal of Alloys and Compounds, 2018, 742: 835 − 843. doi: 10.1016/j.jallcom.2018.01.386
|
鲍泥发, 胡小武, 徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 材料导报, 2018, 32(12): 2015 − 2020. doi: 10.11896/j.issn.1005-023X.2018.12.014
Bao Nifa, Hu Xiaowu, Xu Tao. Interfacial reaction and microstructure evolution of SnAgCu-xBi/Cu joints[J]. Materials Reports, 2018, 32(12): 2015 − 2020. doi: 10.11896/j.issn.1005-023X.2018.12.014
|
Jiang N, Zhang L, Liu Z Q, et al. Reliability issues of lead-free solder joints in electronic devices[J]. Science and Technology of Advanced Materials, 2019, 20(1): 876 − 901. doi: 10.1080/14686996.2019.1640072
|
Nazri S F, Salleh M A A M. The effects of gallium additions on the microstructure of lead-free solder materials: a short review[J]. Solid State Phenomena, 2018, 280: 187 − 193. doi: 10.4028/www.scientific.net/SSP.280.187
|
Wang H, Xue S B, Wang J X. Study on the microstructure and properties of low-Ag Sn–0.3Ag–0.7Cu–0.5Ga solder alloys bearing Pr[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(11): 8246 − 8254. doi: 10.1007/s10854-017-6537-y
|
Xue P, Liang W L, He P, et al. Tin whisker growth inhibition in RE-doped Sn-Zn soldered joints[J]. Applied Sciences, 2019, 9(7): 1406. doi: 10.3390/app9071406
|
马超力, 薛松柏, 王博, 等. BAg17CuZnSn-xCe钎料组织及性能分析[J]. 焊接学报, 2018, 39(8): 42 − 46. doi: 10.12073/j.hjxb.2018390198
Ma Chaoli, Xue Songbai, Wang Bo, et al. Study on microstructure and properties of BAg17CuZnSn-xCe filler metals[J]. Transactions of the China Welding Institution, 2018, 39(8): 42 − 46. doi: 10.12073/j.hjxb.2018390198
|
Ma C L, Xue S B, Wang B. Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga[J]. Journal of Alloys and Compounds, 2016, 688: 854 − 862. doi: 10.1016/j.jallcom.2016.07.255
|
张亮, 韩继光, 刘凤国, 等. 纳米TiO2颗粒对SnAgCu钎料组织与性能的影响[J]. 稀有金属材料与工程, 2013, 42(9): 1897 − 1900.
Zhang Liang, Han Jiguang, Liu Fengguo, et al. Effect of nano-particles TiO2 on the microstructures and properties of SnAgCu Solders[J]. Rare Metal Materials and Engineering, 2013, 42(9): 1897 − 1900.
|
Gao L L, Xue S B, Zhang L, et al. Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder[J]. Journal of Materials Science Materials in Electronics, 2010, 21(7): 643 − 648. doi: 10.1007/s10854-009-9970-8
|
Dudek M A, Chawla N. Effect of rare-earth (La, Ce, and Y) additions on the microstructure and mechanical behavior of Sn-3.9Ag-0.7Cu solder alloy[J]. Metallurgical and Materials Transactions A, 2010, 41(3): 610 − 620. doi: 10.1007/s11661-009-0146-1
|
Zhang L, Xue S B, Gao L L, et al. Effects of bulk Cu6Sn5 intermetallic compounds on the properties of Sn-Ag-Cu-Ce soldered joints[J]. Soldering & Surface Mount Technology, 2011, 23(1): 4 − 9.
|
Luo D X, Xue S B, Li Z Q. Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder[J]. Journal of Materials Ence Materials in Electronics, 2014, 25(8): 3566 − 3571. doi: 10.1007/s10854-014-2057-1
|
Zhang S Y, Zhu B X, Zhou X, et al. Wettability and interfacial morphology of Sn–3.0 Ag–0.5 Cu solder on electroless nickel plated ZnS transparent ceramic[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(19): 17972 − 17985. doi: 10.1007/s10854-019-02151-w
|
张亮, 孙磊, 郭永环, 等. SnAgCu-xEu钎料润湿性能及焊点力学性能研究[J]. 稀土, 2015, 36(4): 51 − 55.
Zhang Liang, Sun Lei, Guo Yonghuan, et al. Wettability of SnAgCu-xEu solders and mechanical properties of solder joints[J]. Chinese Rare Earth, 2015, 36(4): 51 − 55.
|
Liu S, Xue S B, Zhong S J, et al. Properties and microstructure of Sn–0.7Cu–0.05Ni lead-free solders with rare earth Nd addition[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(2): 1400 − 1410. doi: 10.1007/s10854-018-0410-5
|
Wu J, Xue S B, Wang J W, et al. Effect of Pr addition on properties and Sn whisker growth of Sn–0.3 Ag–0.7 Cu low-Ag solder for electronic packaging[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(14): 10230 − 10244. doi: 10.1007/s10854-017-6790-0
|
Zhang L, Fan X Y, Guo Y H, et al. Properties enhancement of SnAgCu solders containing rare earth Yb[J]. Materials & Design, 2014, 57: 646 − 651.
|
Tu X X, Yi D Q, Wu J, et al. Influence of Ce addition on Sn-3.0Ag-0.5Cu solder joints: Thermal behavior, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2017, 698: 317 − 328. doi: 10.1016/j.jallcom.2016.12.191
|
Chen H M, Guo C J, Huang J P, et al. Influence of gallium addition in Sn–Ag–Cu lead-fee solder[J]. Journal of Materials Science Materials in Electronics, 2015, 26(7): 5459 − 5464. doi: 10.1007/s10854-015-3102-4
|
Zhang Q K, Long W M, Yu X Q, et al. Effects of Ga addition on microstructure and properties of Sn–Ag–Cu/Cu solder joints[J]. Journal of Alloys and Compounds, 2015, 622: 973 − 978. doi: 10.1016/j.jallcom.2014.11.030
|
Xu J C, Xue S B, Luo D X, et al. Effect of Ga on the inoxidizability and wettability of Sn-0.5Ag-0.7Cu-0.05Pr solder[J]. Advances in Materials Science and Engineering, 2017(2017): 975.
|
Liu N S, Lin K L. The effect of Ga content on the wetting reaction and interfacial morphology formed between Sn–8.55Zn–0.5Ag–0.1Al–xGa solders and Cu[J]. Scripta Materialia, 2006, 54(2): 219 − 224. doi: 10.1016/j.scriptamat.2005.09.033
|
孔祥霞, 孙凤莲, 杨淼森, 等. Bi和Ni元素对Cu/SAC/Cu微焊点体钎料蠕变性能的影响[J]. 机械工程学报, 2017, 53(2): 53 − 60. doi: 10.3901/JME.2017.02.053
Kong Xiangxia, Sun Fenglian, Yang Miaosen, et al. Effect of Bi and Ni concentration on the creep behavior of the bulks of Cu/SAC/Cu micro solder joints[J]. Journal of Mechanical Engineering, 2017, 53(2): 53 − 60. doi: 10.3901/JME.2017.02.053
|
Wang B, Xue S B, Wang J X, et al. Effect of rare earth Pr on creep behavior of Sn-0.3Ag-0.7Cu-0.5Ga low-Ag solder alloys[J]. Rare Metal Materials and Engineering, 2018, 47(9): 2657 − 2662. doi: 10.1016/S1875-5372(18)30205-4
|
Pei M, Qu J M. Creep and fatigue behavior of SnAg solders with lanthanum doping[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(3): 712 − 718. doi: 10.1109/TCAPT.2008.922002
|
Zhang L, Xue S B, Gao L L, et al. Creep behavior of SnAgCu solders with rare earth Ce doping[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(3): 412 − 417. doi: 10.1016/S1003-6326(09)60155-2
|
Shi Y W, Tian J, Hao H, et al. Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder[J]. Journal of Alloys and Compounds, 2008, 453(1): 180 − 184.
|
Nan X J, Xue S B, Zhai P Z, et al. Effect of Pr addition on properties of Sn-0.5Ag-0.7Cu-0.5Ga lead-free solder[J]. Journal of Electronic Materials, 2016, 45(10): 5443 − 5448. doi: 10.1007/s11664-016-4656-5
|
邵浩彬, 张宁, 时孝东, 等. 时效处理对Sn0.7Cu-0.5Al2O3/Cu焊点界面形态的影响[J]. 铸造技术, 2016, 37(9): 1838 − 1841.
Shao Haobin, Zhang Ning, Shi Xiaodong, et al. Effect of aging treatment on interfacial morphology of Sn0.7Cu-0.5Al2O3/Cu solder joint[J]. Foundry Technology, 2016, 37(9): 1838 − 1841.
|
王剑豪, 薛松柏, 马超力, 等. 特殊环境用无铅钎料可靠性研究进展[J]. 中国有色金属学报, 2018, 28(12): 113 − 125.
Wang Jianhao, Xue Songbai, Ma Chaoli, et al. Research progress on reliability of lead-free solders under special conditions[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(12): 113 − 125.
|
Wang Y, Zhao X C, Liu Y, et al. Microstructure, wetting property of Sn–Ag–Cu–Bi–x Ce solder and IMC growth at solder/Cu interface during thermal cycling[J]. Rare Metals, 2021, 40(3): 714 − 719.
|
Wu J, Xue S B, Wang J W, et al. Effect of 0.05 wt. % Pr addition on microstructure and shear strength of Sn-0.3Ag-0.7 Cu/Cu solder joint during the thermal aging process[J]. Applied Sciences, 2019, 9(17): 3590. doi: 10.3390/app9173590
|
Zhang L, Xue S B, Zeng G, et al. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging[J]. Journal of Alloys and Compounds, 2012, 510(1): 38 − 45. doi: 10.1016/j.jallcom.2011.08.044
|
Luo D X, Xue S B, Liu S. Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(12): 5195 − 5200. doi: 10.1007/s10854-014-2288-1
|
张志杰, 黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017(5): 592 − 600.
Zhang Zhijie, Huang Mingliang. Liquid-solid electromigration behavior of Cu/Sn-52In/Cu micro-interconnect[J]. Acta Metallurgica Sinica, 2017(5): 592 − 600.
|
黄惠珍, 赵亚楠, 彭如意, 等. Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学[J]. 焊接学报, 2019, 40(6): 23 − 28.
Huang Huizhen, Zhao Yanan, Peng Ruyi, et al. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. Transactions of the China Welding Institution, 2019, 40(6): 23 − 28.
|
樊江磊, 翟恒涛, 刘占云, 等. Sn-Cu-Ni系无铅钎料研究进展[J]. 热加工工艺, 2020(5): 1 − 6.
Fan Jianglei, Zhai Hengtao, Liu Zhanyun, et al. Research progress of Sn-Cu-Ni lead-free solders[J]. Hot Working Technology, 2020(5): 1 − 6.
|
葛进国, 杨莉, 刘海祥, 等. Sn0.7Cu-xNi无铅钎料界面组织与力学性能的研究[J]. 热加工工艺, 2015, 44(21): 237 − 239.
Ge Jinguo, Yang Li, Liu Haixiang, et al. Study on interfacial microstructure and mechanical properties of Sn0.7Cu-xNi lead-free solder[J]. Hot Working Technology, 2015, 44(21): 237 − 239.
|
Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions[J]. Materials Science and Engineering R−Reports, 2004, 44(1): 1 − 44. doi: 10.1016/j.mser.2004.01.001
|
Zeng G, Xue S B, Zhang L, et al. Properties and microstructure of Sn–0.7Cu–0.05Ni solder bearing rare earth element Pr[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(8): 1101 − 1108. doi: 10.1007/s10854-010-0267-8
|
Zeng G, Xue S B, Gao L L, et al. Interfacial microstructure and properties of Sn–0.7Cu–0.05Ni/Cu solder joint with rare earth Nd addition[J]. Journal of Alloys and Compounds, 2011, 509(25): 7152 − 7161. doi: 10.1016/j.jallcom.2011.04.037
|
Wang J X, Xue S B, Han Z J, et al. Effects of rare earth Ce on microstructures, solderability of Sn–Ag–Cu and Sn–Cu–Ni solders as well as mechanical properties of soldered joints[J]. Journal of Alloys and Compounds, 2009, 467(1): 219 − 226.
|
Wang H W, Fang J S, Xu Z Q, et al. Improvement of Ga and Zn alloyed Sn–0.7Cu solder alloys and joints[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(6): 3589 − 3595. doi: 10.1007/s10854-015-2873-y
|
Zhao N, Huang M L, Zhong Y, et al. Effects of rare earth Ce addition on the microstructure, wettability and interfacial reactions of eutectic Sn–0.7Cu solder[J]. Journal of Materials Ence Materials in Electronics, 2015, 26(1): 345 − 352. doi: 10.1007/s10854-014-2406-0
|
Zhang L, Tian L, Guo Y, et al. Wettability of SnCuNi-xEu solders and mechanical properties of solder joints[J]. Journal of Rare Earths, 2014, 32(12): 1184 − 1188. doi: 10.1016/S1002-0721(14)60201-5
|
赵猛, 张亮, 熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(8): 2467 − 2478.
Zhao Meng, Zhang Liang, Xiong Mingyue. Research status and development trend of Sn-Cu lead-free solders[J]. Materials Reports, 2019, 33(8): 2467 − 2478.
|
刘霜, 薛松柏. Nd 对 Sn-0.7 Cu-0.05 Ni 焊点组织与力学性能的影响[J]. 焊接学报, 2020, 41(1): 50 − 54.
Liu Shuang, Xue Songbai. Effect of Nd addition on microstructure and mechanical properties of Sn-0.7Cu-0.05Ni soldered joints[J]. Transactions of the China Welding Institution, 2020, 41(1): 50 − 54.
|
马超力, 薛松柏, 李阳, 等. 时效对Sn-Cu-Ni-xPr/Cu焊点组织与性能的影响[J]. 焊接学报, 2014, 35(3): 85 − 88.
Ma Chaoli, Xue Songbai, Li Yang, et al. Effect of thermal aging on intermetallic compounds and properties of Sn-Cu-Ni-x Pr /Cu soldered joints[J]. Transactions of the China Welding Institution, 2014, 35(3): 85 − 88.
|
Yan Z, Xian A P. Corrosion of Ga-doped Sn-0.7Cu solder in simulated marine atmosphere[J]. Metallurgical & Materials Transactions A, 2013, 44(3): 1462 − 1474.
|
Zhang L, Cui J H, Han J G, et al. Microstructures and properties of SnZn-xEr lead-free solders[J]. Journal of Rare Earths, 2012, 30(8): 790 − 793. doi: 10.1016/S1002-0721(12)60131-8
|
Chen K I, Cheng S C, Cheng C, et al. The effects of gallium additions on microstructures and thermal and mechanical properties of Sn-9Zn solder alloys[J]. Advances in Materials Science and Engineering, 2014, 2014: 606814.
|
Chen K I, Cheng C, Wu S, et al. Effects of Ga addition on the wetting properties and tensile properties of Sn-Zn-Ag solder alloys[J]. Indian Journal of Engineering and Materials Sciences, 2014, 21(6): 621 − 627.
|
浦娟, 薛松柏, 吴铭方, 等. Ga2O3对Ag30CuZnSn药芯银钎料钎缝组织及钎焊接头性能的影响[J]. 焊接学报, 2020, 41(7): 46 − 52.
Pu Juan, Xue Songbai, Wu Mingfang, et al. Effect of Ga2O3 on of microstructure and properties of brazed joints obtained by Ag30CuZnSn flux cored brazing filler metal and brass[J]. Transactions of the China Welding Institution, 2020, 41(7): 46 − 52.
|
罗冬雪, 薛鹏, 薛松柏, 等. 稀土元素Nd对Sn-Zn-Ga无铅钎料组织及性能的影响[J]. 焊接学报, 2013, 34(6): 57 − 60.
Luo Dongxue, Xue Peng, Xue Songbai, et al. Effects of Nd on microstructure and properties of Sn-Zn-Ga Lead-free solder[J]. Transactions of the China Welding Institution, 2013, 34(6): 57 − 60.
|
Chen W X, Xue S B, Wang H, et al. Effects of rare earth Ce on properties of Sn-9Zn lead-free solder[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 719 − 725. doi: 10.1007/s10854-009-9984-2
|
Zhang L, Han J G, Guo Y H, et al. Microstructures and properties of SnZn lead-free solder joints bearing La for electronic packaging[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3269 − 3272. doi: 10.1109/TED.2012.2219624
|
张亮, 杨帆, 郭永环, 等. 含Yb的Sn-Zn无铅钎料性能研究[J]. 稀土, 2017, 38(5): 33 − 37.
Zhang Liang, Yang Fan, Guo Yonghuan, et al. Effect of rare earth Yb on the properties of Sn-Zn lead-free solders[J]. Chinese Rare Earth, 2017, 38(5): 33 − 37.
|
Wang H, Xue S B, Zhao F, et al. Effects of Ga, Al, Ag, and Ce multi-additions on the wetting characteristics of Sn-9Zn lead-free solder[J]. Rare Metals, 2009, 28(6): 600 − 605. doi: 10.1007/s12598-009-0115-2
|
Chen W X, Xue S B, Wang H, et al. Investigation on properties of Ga to Sn-9Zn lead-free solder[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(5): 496 − 502. doi: 10.1007/s10854-009-9945-9
|
Chen W X, Xue S B, Wang H. Wetting properties and interfacial microstructures of Sn–Zn–xGa solders on Cu substrate[J]. Materials & Design, 2010, 31(4): 2196 − 2200.
|
Zhao G J, Wen G H, Sheng G M, et al. Effects of rapid solidification process and 0.1%Pr/Nd addition on characteristics of Sn−9Zn solder alloy and interfacial properties of Cu/solder/Cu joints[J]. Journal of Central South University, 2016, 23(8): 1831 − 1838. doi: 10.1007/s11771-016-3237-3
|
El-Daly A A, Swilem Y, Makled M H, et al. Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys[J]. Journal of Alloys and Compounds, 2009, 484(1−2): 134 − 142. doi: 10.1016/j.jallcom.2009.04.108
|
Mahmudi R, Geranmayeh A R, Zahiri B, et al. Effect of rare earth element additions on the impression creep of Sn-9Zn solder alloy[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(1): 58 − 64. doi: 10.1007/s10854-009-9870-y
|
Tian J, Hong C F, Hong L H, et al. Effect of rare earth metals on the properties of Zn-20Sn high-temperature lead-free solder[J]. Journal of Electronic Materials, 2019, 48(5): 2685 − 2690. doi: 10.1007/s11664-018-06917-6
|
Xiao Z X, Xue S B, Hu Y H, et al. Properties and microstructure of Sn-9Zn lead-free solder alloy bearing Pr[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(6): 659 − 665. doi: 10.1007/s10854-010-0192-x
|
Xue P, Xue S B, Shen Y F, et al. Effect of Pr on properties and Sn whisker growth of Sn-9Zn-xPr solder[J]. Soldering & Surface Mount Technology, 2012, 24(4): 280 − 286.
|
李双, 胡小武, 徐涛, 等. Sn-9Zn/Cu焊点界面反应及其化合物生长行为[J]. 电子元件与材料, 2017, 36(11): 60 − 67.
Li Shuang, Hu Xiaowu, Xu Tao, et al. Sn-9Zn/Cu interface reaction and its IMC growth behavior[J]. Electronic Components and Materials, 2017, 36(11): 60 − 67.
|
Xue P, Xue S B, Shen Y F, et al. Interfacial microstructures and mechanical properties of Sn–9Zn–0.5Ga–xNd on Cu substrate with aging treatment[J]. Materials & Design, 2014, 60: 1 − 6.
|
Ye H, Xue S B, Luo J D, et al. Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition[J]. Materials & Design, 2013, 46: 816 − 823.
|
Xue P, Xue S B, Shen Y F, et al. Investigation on the intermetallic compound layer growth of SnZnGa/SnZnGaNd solder joints[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(10): 4219 − 4224. doi: 10.1007/s10854-014-2152-3
|
Lin H J, Chuang T H. The effect of 0.5 wt. % Ce additions on the electromigration of Sn9Zn BGA solder packages with Au/Ni(P)/Cu and Ag/Cu pads[J]. Materials Letters, 2010, 64(4): 506 − 509. doi: 10.1016/j.matlet.2009.11.058
|
李继平, 卫国强. Sn-Bi系低温无铅钎料的研究现状与展望[J]. 焊接技术, 2019, 48(4): 1 − 5.
Li Jiping, Wei Guoqiang. Research status and prospect of Sn-Bi series low-temperature lead-free solder[J]. Welding Technology, 2019, 48(4): 1 − 5.
|
Wang F, Chen H, Huang Y, et al. Recent progress on the development of Sn–Bi based low-temperature Pb-free solders[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3222 − 3243. doi: 10.1007/s10854-019-00701-w
|
Schon A F, Reyes R V, Spinelli J E, et al. Assessing microstructure and mechanical behavior changes in a Sn-Sb solder alloy induced by cooling rate[J]. Journal of Alloys & Compounds, 2019, 809: 151780.
|
杨帆, 张亮, 孙磊, 等. Sn-Bi系电子互连材料研究进展[J]. 电子元件与材料, 2016, 35(6): 1 − 7.
Yang Fan, Zhang Liang, Sun Lei, et al. Research status of Sn-Bi system electronic interconnection materials[J]. Electronic Components and Materials, 2016, 35(6): 1 − 7.
|
Zeng G, Mcdonald S, Nogita K. Development of high-temperature solders: Review[J]. Microelectronics Reliability, 2012, 52(7): 1306 − 1322. doi: 10.1016/j.microrel.2012.02.018
|
张亮, 杨帆, 孙磊, 等. 近十年含稀土无铅钎料研究进展及发展趋势[J]. 稀土, 2017, 38(1): 126 − 133.
Zhang Liang, Yang Fan, Sun Lei, et al. Latest advances and development trend of lead free solder bearing rare earths in decades[J]. Chinese Rare Earth, 2017, 38(1): 126 − 133.
|
Dudek M A, Chawla N. Mechanisms for Sn whisker growth in rare earth-containing Pb-free solders[J]. Acta Materialia, 2009, 57(15): 4588 − 4599. doi: 10.1016/j.actamat.2009.06.031
|
Liu M, Xian A P. Tin whisker growth on the surface of Sn-0.7Cu lead-free solder with a rare earth (Nd) addition[J]. Journal of Electronic Materials, 2009, 38(11): 2353 − 2361. doi: 10.1007/s11664-009-0926-9
|
Wu J, Xue S B, Wang J W, et al. Comparative studies on microelectronic reliability issue of Sn whisker growth in Sn-0.3Ag-0.7Cu-1Pr solder under different environments[J]. Microelectronics Reliability, 2017, 79: 124 − 135. doi: 10.1016/j.microrel.2017.10.020
|
Ye H, Xue S B, Zhang L, et al. Sn whisker growth in Sn–9Zn–0.5Ga–0.7Pr lead-free solder[J]. Journal of Alloys and Compounds, 2011, 509(5): L52 − L55. doi: 10.1016/j.jallcom.2010.09.189
|
Zhang L, Sun L, Han J G, et al. Sizes effect of CeSn3 on the whiskers growth of SnAgCuCe solder joints in electronic packaging[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(8): 6194 − 6197.
|
Xue P, Wang K H, Zhou Q, et al. Effect of Nd on tin whisker growth in Sn–Zn soldered joint[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3742 − 3747. doi: 10.1007/s10854-015-4217-3
|
Ye H, Xue S B, Chen C, et al. Growth behaviors of tin whisker in RE-doped Sn-Zn-Ga solder[J]. Soldering & Surface Mount Technology, 2013, 25(3): 139 − 144.
|
Ye H, Xue S B, Pecht M. Evaluation of the microstructure and whisker growth in Sn–Zn–Ga solder with Pr content[J]. Journal of Materials Research, 2012, 27(14): 1887 − 1894. doi: 10.1557/jmr.2012.144
|
Lin H J, Chuang T H. Effects of Ce and La additions on the microstructure and mechanical properties of Sn-9Zn solder joints[J]. Journal of Electronic Materials, 2010, 39(2): 200 − 208. doi: 10.1007/s11664-009-0959-0
|
Chuang T H, Chi C C. Effect of adding Ge on rapid whisker growth of Sn–3Ag–0.5Cu–0.5Ce alloy[J]. Journal of Alloys and Compounds, 2009, 480(2): 974 − 980. doi: 10.1016/j.jallcom.2009.02.118
|
Xue P, Xue S B, Shen Y F, et al. Wettability and interfacial whiskers of Sn–9Zn–0.5Ga–0.08Nd solder with Sn, SnBi and Au/Ni coatings[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(8): 3520 − 3525. doi: 10.1007/s10854-014-2049-1
|
Jain C C, Chen C L, Lai H J, et al. The inhibition of tin whiskers on the surface of Sn-8Zn-3Bi-0.5Ce solders[J]. Journal of Materials Engineering & Performance, 2011, 20(6): 1043 − 1048.
|
Xue P, Xue S B, Shen Y F, et al. Inhibiting the growth of Sn whisker in Sn-9Zn lead-free solder by Nd and Ga[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(6): 2671 − 2675. doi: 10.1007/s10854-014-1927-x
|
Kletowski Z. Anomalous thermoelectric power behaviour in PrSn3 and NdSn3[J]. Solid State Communications, 2006, 137(11): 634 − 636. doi: 10.1016/j.ssc.2005.12.041
|
Effect of Ga on microstructure and properties of Sn-Zn-Bi solder for photovolt ribbon[J]. China Welding, 2019, 28(4):1−7.
|
Zhang J X, Xue S B, Liu S. Thermodynamic reaction mechanism of the intermetallic compounds of Sn xNd y and GaxNd y in soldered joint of Sn-9Zn-1Ga-0.5Nd[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(5): 3064 − 3068. doi: 10.1007/s10854-015-2798-5
|
Xue P, Xue S B, Shen Y F, et al. Mechanism of reaction between Nd and Ga in Sn-Zn-0.5Ga- xNd solder[J]. Journal of Electronic Materials, 2014, 43(9): 3404 − 3410. doi: 10.1007/s11664-014-3278-z
|
[1] | GONG Baoming, TIAN Runming, LIU Xiuguo, DENG Caiyan, WANG Dongpo. Comparative study on determination methods of resistance curves of circular joints based on single edge notched tensile specimens[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 21-28. DOI: 10.12073/j.hjxb.20210610001 |
[2] | GAO Shanshan, DI Xinjie, LI Chengning, JIANG Yuanbo, LI Weiwei, JI Lingkang. Effect of strain aging on fracture toughness of welded joints of high-strain pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 22-28. DOI: 10.12073/j.hjxb.20210328001 |
[3] | WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001 |
[4] | XU Jie, LI Pengpeng, FAN Yu, SUN Zhi. Effect of temperature on fracture toughness in weld thermal simulated X80 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 22-26. |
[5] | WEN Zhigang, JIN Weiliang, ZHANG Jianli, DENG Caiyan. Influence of post weld heat treatment on fracture toughness of DH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 89-92. |
[6] | MA Caixia, ZHANG Se, HUANG Xusheng, LIN Chengxiao, MA Fubao, YANG Siqian. Fracture toughness of square drill pipe joint by narrow gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 77-80. |
[7] | Zhou Zhiliang, Liu Shuhua. Effect of PWHT on Fracture Toughness of HAZ in a DQTHT80 Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 39-43. |
[8] | Fan Ruixiang, Tian Xitang, Zhu Hongguan. Fracture toughness of welded joints with crack in transverse hard layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 12-15. |
[9] | Sun Xian, Lu Wenxiong, Zhang Zirong. Effect of combined weld on fracture toughness of welded joint of medium-carbon alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 31-38. |
[10] | Wang Zhihui, Xu Biyu, Ye Ciqi. A STUDY OF THE FRACTURE TOUGHNESS OF THE MARTENSITE LAYER IN AUSTENITIC-FERRITIC DISSIMILAR METAL JOINTS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 95-103. |
1. |
崔锡杰,王晓军,李晓航. 改进RRT算法的机器人全局路径规划. 计算机工程与应用. 2025(04): 331-338 .
![]() | |
2. |
张邦成,单玉升,赵航,董雷,尹晓静. 汽车白车身点焊作业多机器人路径规划研究. 组合机床与自动化加工技术. 2024(02): 51-56 .
![]() | |
3. |
马佳玮,孙菁伯,迟关心,张广军,李鑫磊. 基于立体视觉和YOLO深度学习框架的焊缝识别与机器人路径规划算法. 焊接学报. 2024(11): 45-49 .
![]() | |
4. |
李婧,李艳萍. 复杂多陷阱环境下机器人导航路径的蚁群规划策略. 机械设计与制造. 2023(08): 228-232 .
![]() | |
5. |
刘环宇,王宇,赵柏栋,姚奉裕,李显,王德权. 基于改进蚁群算法的机械臂焊接路径规划. 组合机床与自动化加工技术. 2022(06): 28-30+35 .
![]() | |
6. |
龚正,涂福泉,李圣伟. 基于改进狼群算法的焊接机器人路径规划. 传感器与微系统. 2022(12): 122-125 .
![]() | |
7. |
裴跃翔,曹家勇,吕文壮,许海波,李娜. 嵌入筛选操作的遗传算法及其在焊接路径规划中的应用. 机械设计与研究. 2021(02): 109-113 .
![]() | |
8. |
聂芬,赵志华. 基于改进果蝇算法的焊接机器人路径规划. 制造技术与机床. 2021(10): 21-25 .
![]() | |
9. |
姚晓通,李致远,程晓. 基于改进蚁群算法的机器人路径规划研究. 计算机仿真. 2021(11): 379-383 .
![]() | |
10. |
张丽珍,何龙,吴迪,杜战其. 改进型蚁群算法在路径规划中的研究. 制造业自动化. 2020(02): 55-59 .
![]() | |
11. |
徐金雄,王涛,刘军,班勃. 基于双蚁群算法的双机器人路径规划方法. 机床与液压. 2020(23): 45-48 .
![]() | |
12. |
吴泽亮. 基于蚁群算法的航线自动生成方法. 舰船科学技术. 2019(14): 43-45 .
![]() |