Advanced Search
DU Rongbao, ZOU Guisheng, WANG Shuaiqi, LIU Lei. Research progress in low temperature bonding and patterning of metal nanomaterials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 82-96. DOI: 10.12073/j.hjxb.20230613017
Citation: DU Rongbao, ZOU Guisheng, WANG Shuaiqi, LIU Lei. Research progress in low temperature bonding and patterning of metal nanomaterials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 82-96. DOI: 10.12073/j.hjxb.20230613017

Research progress in low temperature bonding and patterning of metal nanomaterials

More Information
  • Received Date: June 12, 2023
  • Available Online: November 08, 2023
  • Utilizing the size effect of metal nanomaterials can significantly lower the bonding temperature and enhance the reliability of solder joints. Low temperature bonding metal nanomaterials, such as silver nano solder paste, have undergone extensive validation and mass production in the packaging of power devices, represented by third-generation semiconductors chips. However, when it comes to advanced packaging for integrated circuits that require patterned solder joints, the challenge lies in transferring power chip packaging technology to meet both low-temperature bonding and patterning bonding requirements, significantly increasing the technical complexity. This article begins by dissecting the fundamental scientific principles behind reducing bonding temperature through the utilization of metal nanomaterials. It then provides an extensive review of the current research status in low-temperature bonding with various nanomaterials. Finally, it focuses on summarizing patterning methods for bondable nanomaterials, offering technical insights for achieving precise spacing, high precision, and efficient graphical low-temperature bonding in advanced packaging.

  • [1]
    Zhang L, Liu Z, Chen S W, et al. Materials, processing and reliability of low temperature bonding in 3D chip stacking[J]. Journal of Alloys and Compounds, 2018, 750: 980 − 995. doi: 10.1016/j.jallcom.2018.04.040
    [2]
    Wiemer M, Haubold M, Jia C, et al. Developments trends in the field of wafer bonding technologies[J]. ECS Transactions, 2008, 16(8): 81. doi: 10.1149/1.2982857
    [3]
    Chen K N, Fan A, Tan C S, et al. Bonding parameters of blanket copper wafer bonding[J]. Journal of Electronic Materials, 2006, 35: 230 − 234. doi: 10.1007/BF02692440
    [4]
    Ko C T, Chen K N. Low temperature bonding technology for 3D integration[J]. Microelectronics reliability, 2012, 52(2): 302 − 311. doi: 10.1016/j.microrel.2011.03.038
    [5]
    王帅奇, 邹贵生, 刘磊. 先进封装中铜-铜低温键合技术研究进展[J]. 焊接学报, 2022, 43(11): 112 − 125. doi: 10.12073/j.hjxb.20220703003

    Wang Shuaiqi, Zou Guisheng, Liu Lei. Research progress of low-temperature Cu-Cu bonding technology for advanced packaging[J]. Transactions of the China Welding Institution, 2022, 43(11): 112 − 125. doi: 10.12073/j.hjxb.20220703003
    [6]
    黄天, 甘贵生, 刘聪, 等. 电子封装低温互连技术研究进展[J]. 中国有色金属学报, 2023, 33(4): 1144 − 1178. doi: 10.11817/j.ysxb.1004.0609.2021-42856

    Huang Tian, Gan Guisheng, Liu Cong, et al. Research progress of low temperature interconnection technology for electronic packaging[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(4): 1144 − 1178. doi: 10.11817/j.ysxb.1004.0609.2021-42856
    [7]
    Hu F, Xu P, Zhang W, et al. A low-temperature solid-state bonding method based on copper bump coated with nickel microcones and silver buffer[J]. Materials Letters, 2016, 181: 165 − 168. doi: 10.1016/j.matlet.2016.06.030
    [8]
    Wang P I, Lee S H, Parker T C, et al. Low temperature wafer bonding by copper nanorod array[J]. Electrochemical and Solid-State Letters, 2009, 12(4): H138. doi: 10.1149/1.3075900
    [9]
    Sakai T, Imaizumi N, Miyajima T. Low temperature Cu-Cu direct bonding for 3D-IC by using fine crystal layer[C]//2012 2nd IEEE CPMT Symposium Japan, IEEE, 2012: 1-4.
    [10]
    Sosa R A, Mohan K, Antoniou A, et al. Low-temperature all-Cu interconnections formed by pressure-less sintering of Cu-pillars with nanoporous-Cu caps[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), IEEE, 2021: 390-394.
    [11]
    Sosa R A, Mohan K, Nguyen L, et al. Cu pillar with nanocopper caps: the next interconnection node beyond traditional Cu pillar[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), IEEE, 2019: 655-660.
    [12]
    Islam N, Pandey V, Kim K O. Fine pitch Cu pillar with bond on lead (BOL) assembly challenges for low cost and high performance flip chip package[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE, 2017: 102-107.
    [13]
    Lee J B, Aw J L, Rhee M W. 3-D TSV Six-Die Stacking and reliability assessment of 20-μm-pitch bumps on large-scale dies[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 7(1): 33 − 38.
    [14]
    果世驹. 粉末烧结理论[M]. 北京: 冶金工业出版社, 1998.

    Guo Shiju. Powder sintering theory[M]. Beijing: Metallurgical Industry Press, 1998.
    [15]
    Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles[J]. International Materials Reviews, 2008, 53(6): 326 − 352. doi: 10.1179/174328008X353538
    [16]
    阮建明, 黄培云. 粉末冶金原理[J]. 北京: 冶金工业出版社, 2012.

    Ruan Jianming, Huang Peiyun. Principle of powder metallurgy[M]. Beijing: Metallurgical Industry Press, 2012.
    [17]
    Deng Z, Zou G, Zhang H, et al. Bonding Below 150° C Using Nano-Ag Film for Power Electronics Packaging[J]. Journal of Electronic Materials, 2023, 52(6): 3903 − 3913. doi: 10.1007/s11664-023-10358-1
    [18]
    Khiat M N, Wang X, Benabou L, et al. Modeling of the densification of silver particles during sintering at controlled pressure and temperature[J]. Journal of Physics:Conference Series, IOP Publishing, 2018, 1141(1): 012157.
    [19]
    Asoro M A, Kovar D, Shao-Horn Y, et al. Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM[J]. Nanotechnology, 2009, 21(2): 025701.
    [20]
    Liu Z J, Cheng Q, Wang Y, et al. Sintering neck growth mechanism of Fe nanoparticles: A molecular dynamics simulation[J]. Chemical Engineering Science, 2020, 218: 115583. doi: 10.1016/j.ces.2020.115583
    [21]
    Yan J, Zou G, Liu L, et al. Sintering mechanisms and mechanical properties of joints bonded using silver nanoparticles for electronic packaging applications[J]. Welding in the World, 2015, 59: 427 − 432. doi: 10.1007/s40194-014-0216-x
    [22]
    郭岩岩, 历长云, 冀国良, 等. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161 − 7. doi: 10.11896/cldb.20080161

    Guo Yanyan, Li Changyun, Ji Guoliang, et al. Research status of numerical simulation of powder densification process[J]. Materials Reports, 2022, 36(18): 20080161 − 7. doi: 10.11896/cldb.20080161
    [23]
    Bai J G, Lei T G, Calata J N, et al. Control of nanosilver sintering attained through organic binder burnout[J]. Journal of Materials Research, 2007, 22(12): 3494 − 3500. doi: 10.1557/JMR.2007.0440
    [24]
    Wei W, Gao L, Tan Y, et al. Feasibility investigation and characterization of liquid dispersant–assisted sintering of silver to bond large‐area plates[J]. Advanced Engineering Materials, 2023, 25(10): 2201574. doi: 10.1002/adem.202201574
    [25]
    Grupp R, Nöthe M, Kieback B, et al. Cooperative material transport during the early stage of sintering[J]. Nature Communications, 2011, 2(1): 298. doi: 10.1038/ncomms1300
    [26]
    Wakai F, Okuma G. Rigid body motion of multiple particles in solid-state sintering[J]. Acta Materialia, 2022, 235: 118092. doi: 10.1016/j.actamat.2022.118092
    [27]
    Zuo Y, Zhao C, Robador A, et al. Quasi-in-situ observation of the grain growth and grain boundary movement in sintered Cu nanoparticle interconnects[J]. Acta Materialia, 2022, 236: 118135. doi: 10.1016/j.actamat.2022.118135
    [28]
    Liang P, Pan Z, Tang L, et al. Molecular dynamics simulation of sintering densification of multi-scale silver layer[J]. Materials, 2022, 15(6): 2232. doi: 10.3390/ma15062232
    [29]
    Li S, Liu Y, Ye H, et al. Sintering mechanism of Ag nanoparticle-nanoflake: a molecular dynamics simulation[J]. Journal of Materials Research and Technology, 2022, 16: 640 − 655. doi: 10.1016/j.jmrt.2021.12.029
    [30]
    Zhang Y, Xiao X, Zhang J. Kinetic monte carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography[J]. Results in Physics, 2019, 13: 102336. doi: 10.1016/j.rinp.2019.102336
    [31]
    Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach[J]. Acta materialia, 2006, 54(4): 953 − 961. doi: 10.1016/j.actamat.2005.10.032
    [32]
    Wakai F, Yoshida M, Shinoda Y, et al. Coarsening and grain growth in sintering of two particles of different sizes[J]. Acta materialia, 2005, 53(5): 1361 − 1371. doi: 10.1016/j.actamat.2004.11.029
    [33]
    Paredes-Goyes B, Jauffres D, Missiaen J M, et al. Grain growth in sintering: A discrete element model on large packings[J]. Acta Materialia, 2021, 218: 117182. doi: 10.1016/j.actamat.2021.117182
    [34]
    Buffat P, Borel J P. Size effect on the melting temperature of gold particles[J]. Physical Review A, 1976, 13(6): 2287. doi: 10.1103/PhysRevA.13.2287
    [35]
    Wang W, Zou G, Jia Q, et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering:A, 2020, 793: 139894. doi: 10.1016/j.msea.2020.139894
    [36]
    Guo W, Zhang H, Zhang X, et al. Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering[J]. Journal of Alloys and Compounds, 2017, 690: 86 − 94. doi: 10.1016/j.jallcom.2016.08.060
    [37]
    Wang C, Li G, Xu L, et al. Low temperature sintered silver nanoflake paste for power device packaging and its anisotropic sintering mechanism[J]. ACS Applied Electronic Materials, 2021, 3(12): 5365 − 5373. doi: 10.1021/acsaelm.1c00857
    [38]
    Oppermann H, Dietrich L. Nanoporous gold bumps for low temperature bonding[J]. Microelectronics Reliability, 2012, 52(2): 356 − 360. doi: 10.1016/j.microrel.2011.06.027
    [39]
    李俊龙, 徐杨, 赵雪龙, 等. 铜颗粒低温烧结技术的研究进展[J]. 焊接学报, 2022, 43(3): 13 − 24. doi: 10.12073/j.hjxb.20210225002

    Li Junlong, Xu Yang, Zhao Xuelong, et al. Research progress of low temperature sintering technology for Cu particles[J]. Transactions of the China Welding Institution, 2022, 43(3): 13 − 24. doi: 10.12073/j.hjxb.20210225002
    [40]
    杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360 − 364.

    Yang Jinlong, Dong Changcheng, Luo Jian. Development of low temperature sintered nanoscale silver for new power device packaging[J]. Materials Reports, 2019, 33(Z2): 360 − 364.
    [41]
    Yan J. A review of sintering-bonding technology using Ag nanoparticles for electronic packaging[J]. Nanomaterials, 2021, 11(4): 927. doi: 10.3390/nano11040927
    [42]
    Wang M, Mei Y H, Jin J, et al. Pressureless sintered-silver die-attach at 180 °C for power electronics packaging[J]. IEEE Transactions on Power Electronics, 2021, 36(11): 12141 − 12145. doi: 10.1109/TPEL.2021.3074853
    [43]
    Wu Y, Zou G, Wang S, et al. Rapid and low temperature sintering bonding using Cu nanoparticle film for power electronic packaging[J]. Applied Surface Science, 2022, 603: 154422. doi: 10.1016/j.apsusc.2022.154422
    [44]
    Liu J, Chen H, Ji H, et al. Highly conductive Cu–Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33289 − 33298.
    [45]
    Mou Y, Liu J, Cheng H, et al. Facile preparation of self-reducible Cu nanoparticle paste for low temperature Cu-Cu bonding[J]. Jom, 2019, 71: 3076 − 3083. doi: 10.1007/s11837-019-03517-5
    [46]
    Lee C H, Choi E B, Lee J H. Characterization of novel high-speed die attachment method at 225 °C using submicrometer Ag-coated Cu particles[J]. Scripta Materialia, 2018, 150: 7 − 12. doi: 10.1016/j.scriptamat.2018.02.029
    [47]
    Fang J P, Cai J, Wang Q, et al. Low temperature Au-Au bonding using Ag nanoparticles as intermediate[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC), IEEE, 2020: 729-734.
    [48]
    Fang J P, Cai J, Wang Q, et al. Low temperature Au-Au bonding using Ag nanoparticles as intermediate for die attachment in power device packaging[J]. Applied Surface Science, 2022, 593: 153436. doi: 10.1016/j.apsusc.2022.153436
    [49]
    Peng Y, Ye Y, Yu C, et al. Study on the preparation and performance of low-temperature sintering and high-thermal-conductivity silver nanowire film[J]. Metals, 2023, 13(4): 819. doi: 10.3390/met13040819
    [50]
    Yu Z, Tan Y Z, Bayer C F, et al. Cu-Cu thermocompression bonding with Cu-nanowire films for power semiconductor die-attach on DBC substrates[C]//2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC), IEEE, 2021: 1-7.
    [51]
    Strahringer D, Roustaie F, Weissenborn F, et al. Optimizing the nano wiring and KlettSintering parameters for low-temperature die to DCB attach of power electronic chips[C]//2021 16th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), IEEE, 2021: 31-34.
    [52]
    Chen C, Suganuma K. Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size[J]. Materials & Design, 2019, 162: 311 − 321.
    [53]
    Yeom J, Nagao S, Chen C, et al. Ag particles for sinter bonding: Flakes or spheres[J]. Applied Physics Letters, 2019, 114(25): 253103. doi: 10.1063/1.5099140
    [54]
    Soichi S, Suganuma K. Low-temperature and low-pressure die bonding using thin Ag-flake and Ag-particle pastes for power devices[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(6): 923 − 929. doi: 10.1109/TCPMT.2013.2256463
    [55]
    Chen C, Zhang Z, Zhang B, et al. Micron-sized Ag flake particles direct die bonding on electroless Ni–P-finished DBC substrate: low-temperature pressure-free sintering, bonding mechanism and high-temperature aging reliability[J]. Journal of Materials Science:Materials in Electronics, 2020, 31: 1247 − 1256. doi: 10.1007/s10854-019-02636-8
    [56]
    Suganuma K, Sakamoto S, Kagami N, et al. Low-temperature low-pressure die attach with hybrid silver particle paste[J]. Microelectronics Reliability, 2012, 52(2): 375 − 380. doi: 10.1016/j.microrel.2011.07.088
    [57]
    Yang F, Hu B, Peng Y, et al. Ag microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications[J]. Journal of Materials Science:Materials in Electronics, 2019, 30: 5526 − 5535. doi: 10.1007/s10854-019-00846-8
    [58]
    Kim M I, Choi E B, Lee J H. Improved sinter-bonding properties of silver-coated copper flake paste in air by the addition of sub-micrometer silver-coated copper particles[J]. Journal of Materials Research and Technology, 2020, 9(6): 16006 − 16017. doi: 10.1016/j.jmrt.2020.11.069
    [59]
    Dietrich L, Oppermann H, Lopper C, et al. Fabrication and characterization of nanoporous gold (NPG) interconnects for wafer level packaging[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), IEEE, 2022: 873-882.
    [60]
    Shahane N, Mohan K, Behera R, et al. Novel high-temperature, high-power handling all-Cu interconnections through low-temperature sintering of nanocopper foams[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC), IEEE, 2016: 829-836.
    [61]
    Shahane N, Mohan K, Ramos G, et al. Enabling chip-to-substrate all-Cu interconnections: design of engineered bonding interfaces for improved manufacturability and low-temperature bonding[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE, 2017: 968-975.
    [62]
    Mohan K, Shahane N, Sosa R, et al. Demonstration of patternable all-Cu compliant interconnections with enhanced manufacturability in chip-to-substrate applications[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC), IEEE, 2018: 301-307.
    [63]
    Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics[J]. Advanced Materials, 2015, 27(1): 109 − 115. doi: 10.1002/adma.201404133
    [64]
    Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin‐film transistors[J]. Advanced Materials, 2016, 28(28): 5986 − 5996. doi: 10.1002/adma.201600772
    [65]
    Li J, Rossignol F, Macdonald J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing[J]. Lab on a Chip, 2015, 15(12): 2538 − 2558. doi: 10.1039/C5LC00235D
    [66]
    Yang P, Zhang L, Kang D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays[J]. Advanced Optical Materials, 2020, 8(1): 1901429. doi: 10.1002/adom.201901429
    [67]
    Park J U, Lee S, Unarunotai S, et al. Nanoscale, electrified liquid jets for high-resolution printing of charge[J]. Nano Letters, 2010, 10(2): 584 − 591. doi: 10.1021/nl903495f
    [68]
    Mishra S, Barton K L, Alleyne A G, et al. High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet[J]. Journal of Micromechanics and Microengineering, 2010, 20(9): 095026. doi: 10.1088/0960-1317/20/9/095026
    [69]
    Wang D, Wang Q, Meng Q, et al. High temperature-assisted electrohydrodynamic jet printing of sintered type nano silver ink on a heated substrate[J]. Journal of Micromechanics and Microengineering, 2019, 29(4): 045012. doi: 10.1088/1361-6439/ab0739
    [70]
    Zürcher J, Yu K, Schlottig G, et al. Nanoparticle assembly and sintering towards all-copper flip chip interconnects[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC), IEEE, 2015: 1115-1121.
    [71]
    Del Carro L, Zürcher J, Drechsler U, et al. Low-temperature dip-based all-copper interconnects formed by pressure-assisted sintering of copper nanoparticles[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(8): 1613 − 1622. doi: 10.1109/TCPMT.2019.2891111
    [72]
    Del Carro L. Sintering of copper nanoparticle pastes for microelectronic packaging[D]. ETH Zurich, 2018.
    [73]
    Del Carro L, Kossatz M, Schnackenberg L, et al. Laser sintering of dip-based all-copper interconnects[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC), IEEE, 2018: 279-286.
    [74]
    Zürcher J, Del Carro L, Schlottig G, et al. All-copper flip chip interconnects by pressureless and low temperature nanoparticle sintering[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC), IEEE, 2016: 343-349.
    [75]
    吴永超, 胡锦涛, 郭伟, 等. 微米银焊点的超快激光图形化沉积及其在芯片连接中的应用探索[J]. 中国激光, 2022, 49(2): 0202002. doi: 10.3788/CJL202249.0202002

    Wu Yongchao, Hu Jintao, Guo Wei, et al. Ultrafast laser patterning deposition of micron sliver bumps for chip bonding application[J]. Chinese Journal of Lasers, 2022, 49(2): 0202002. doi: 10.3788/CJL202249.0202002
    [76]
    吴永超, 王帅奇, 郭伟, 等. 纳米银微焊点阵列的超快激光图形化沉积及其芯片封装研究[J]. 机械工程学报, 2022, 58(2): 166 − 175. doi: 10.3901/JME.2022.02.166

    Wu Yongchao, Wang Shuaiqi, Guo Wei, et al. Patterning deposition of nano-sliver micro bumps array by ultrafast laser and its chip packaging research[J]. Journal of Mechanical Engineering, 2022, 58(2): 166 − 175. doi: 10.3901/JME.2022.02.166
    [77]
    Wu Z, Wang Q, Song C, et al. Low temperature fine-pitch wafer-level Cu-Cu bonding using nanoparticles fabricated by PVD[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC), IEEE, 2018: 287-292.
    [78]
    Wang S, Zou G, Wu Y, et al. Patterned Cu nanoparticle film for All-Cu interconnection without chemical mechanical polishing pretreatment[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(5): 604 − 614. doi: 10.1109/TCPMT.2023.3278320
    [79]
    Lee S A, Yang J W, Choi S, et al. Nanoscale electrodeposition: Dimension control and 3D conformality[J]. Exploration, 2021, 1(3): 20210012. doi: 10.1002/EXP.20210012
    [80]
    Roustaie F, Quednau S, Dassinger F, et al. In-situ synthesis of metallic nanowire arrays for ionization gauge electron sources[J]. Journal of Vacuum Science & Technology B, 2016, 34(2): 02G103.
    [81]
    Roustaie F, Bieker J, Cicek R, et al. Novel fabrication method for integration of template grown metallic nanocones with controllable tip diameter and apex angle[J]. Microelectronic Engineering, 2017, 180: 81 − 85. doi: 10.1016/j.mee.2017.06.003
    [82]
    Roustaie F, Quednau S, Weissenborn F, et al. Room temperature KlettWelding interconnect technology for high performance CMOS logic[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), IEEE, 2021: 371-376.
    [83]
    Roustaie F, Quednau S, Dassinger F, et al. Room temperature interconnection technology for bonding fine pitch bumps using NanoWiring, KlettWelding, KlettSintering and KlettGlueing[C]//2020 15th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), IEEE, 2020: 168-171.
  • Related Articles

    [1]TIAN Qichao, ZHAO Yang, YANG Ming, MA Honghao, SHEN Zhaowu, REN Zhiqiang. Structural of the Al0.1CoCrFeNi high-entropy alloy/Cu explosive welding interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 36-42. DOI: 10.12073/j.hjxb.20210307001
    [2]CHEN Yixin, LI Xiaoquan, HAO Benxing, YUN Yeling, DU Yongqin. Analysis of microstructure and properties and nanoindentation of nickel-based alloy heterogeneous fusion welded 9Ni steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 90-96. DOI: 10.12073/j.hjxb.20200803001
    [3]HUANG Chaoqun1, LI Huan1, LUO Chuanguang1,2, SONG Yonglun3. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 54-58. DOI: 10.12073/j.hjxb.20150710004
    [4]WANG Lifeng, Dai Wenqin, ZHANG Pule, MENG Gongge. Mechanical behavior of IMC in BGA soldered joints by nanoindentation method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 11-14.
    [5]JI Feng, XUE Songbai, LIU Shuang, LOU Jiyuan, LOU Yinbin. Measurement of creep stress exponent of Zn-Al filler metal at room temperature by using nanoindentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 75-78.
    [6]QIN Fei, AN Tong, ZHONG Weixu, LIU Chengyan. Nanoindentation properties of intermetallic compounds in lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 25-28,32.
    [7]WANG Jianxin, LAI Zhongmin, SUN Dandan. Nanoindentation measurement of Sn-Cu-Ni joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 59-62.
    [8]LI Guo, GONG Jianming, CHEN Hu. Finite element analysis and nanoindentation-based experiment of residual stress of SS304/BNi-2/SS304 stainless steel brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 79-82,86.
    [9]ZHANG Guoshang, JING Hongyang, XU Lianyong, WEI Jun, . Thermomechanical characterization of 80Au/20Sn solder using nanoindentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 53-56.
    [10]ZHANG Guoshang, JING Hongyang, XU Lianyong, WEI Jun, HAN Yongdian. Investigation of creep stress exponent of 80Au/20Sn solder by nanoindentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 73-76.
  • Cited by

    Periodical cited type(1)

    1. 王兴磊,杨赫然,孙兴伟,赵泓荀,潘飞. 基于WOA-RBF的螺杆转子双砂带磨削表面粗糙度及材料去除率预测. 制造技术与机床. 2025(04): 172-179 .

    Other cited types(8)

Catalog

    Article views (222) PDF downloads (82) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return