Citation: | ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Parameters optimization of small scale spot welding for titanium alloy via Taguchi experiment and grey relational analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 101-104. DOI: 10.12073/j.hjxb.2018390132 |
袁 涛, 罗 震, 李 洋, 等. 基于二维DIC技术的电阻点焊板件变形分析[J]. 焊接学报, 2015, 36(11): 53-56.Yuan Tao, Luo Zhen, Li Yang,et al. Study on welding deformation of resistance spot welding using two-dimensional DIC technique[J]. Transactions of the China Welding Institution, 2015, 36(11): 53-56.[2] 宇慧平, 杨 柳, 韩长录, 等. 拉剪载荷下超高强度钢点焊残余应力试验[J]. 焊接学报, 2015, 36(8): 75-78.Yu Huiping, Yang Liu, Han Changlu,et al. Experimental study on welding residual stresses in ultrahigh strength sheet with tensile and shear load[J]. Transactions of the China Welding Institution, 2015, 36(8): 75-78.[3] Pandey A K, Khan M I, Moeed K M. Optimization of resistance spot welding parameters using Taguchi method[J]. International Journal of Engineering Science and Technology, 2013, 5(2): 234-241.[4] Shafee S, Naik B B, Sammaiah K. Resistance spot weld quality characteristics improvement by Taguchi method[J]. Materials Today: Proceedings, 2015, 2(4): 2595-2604.[5] Panda B N, Babhubalendruni M V A R, Biswal B B,et al. Application of artificial intelligence methods to spot welding of commercial aluminum sheets[C]∥Proceedings of Fourth International Conference on Soft Computing for Problem Solving. Springer India, 2015: 21-32.[6] Arunchai T, Sonthipermpoon K, Apichayakul P,et al. Resistance spot welding optimization based on artificial neural network[J]. International Journal of Manufacturing Engineering, 2014(12), 2014: 1-6.[7] Khan M D F, Dwivedi D K, Sharma S. Development of response surface model for tensile shear strength of weld-bonds of aluminium alloy 6061 T651[J]. Materials & Design, 2012, 34: 673-678.[8] 陈玉华, 谢吉林, 倪 泉, 等. 铜/镀镍钢微电阻点焊接头形成机理[J]. 焊接学报, 2015, 36(9): 35-38.Chen Yuhua, Xie Jilin, Ni Quan,et al. Formation mechanism of copper/nickel-coated steel dissimilar metals joint by micro spot resistance welding[J]. Transactions of the China Welding Institution, 2015, 36(9): 35-38.[9] Zhao D, Wang Y, Lin Z,et al. Quality monitoring research of small scale resistance spot welding based on voltage signal[J]. ISIJ International, 2013, 53(2): 240-244.[10] Liu B, Tian Y, Wang C,et al. Extremely fast formation of Cu-Sn intermetallic compounds in Cu/Sn/Cu system via a micro-resistance spot welding process[J]. Journal of Alloys and Compounds, 2016, 687(5): 667-673.[11] Suzuki Y, Ogura T, Takahashi M,et al. Low-current resistance spot welding of pure copper using silver oxide paste[J]. Materials Characterization, 2014, 98(11): 186-192.[12] Chen Y C, Tseng K H, Cheng Y S. Electrode displacement and dynamic resistance during small-scale resistance spot welding[J]. Advanced Science Letters, 2012, 11(1): 72-79.[13] Ghetiya N D, Patel K M, Kavar A J. Multi-objective optimization of FSW process parameters of aluminium alloy using Taguchi-Based grey relational analysis[J]. Transactions of the Indian Institute of Metals, 2016, 69(4): 917-923.
|
[1] | MA Yiming, GUO Xiao, HAN Ying, JIANG Yinglong, LIU Zicheng, GAN Hongfeng, SONG Changhong. Influence mechanism of heat input on the low-temperature impact toughness of the coarse grain heat affected zone of ultra-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 90-98. DOI: 10.12073/j.hjxb.20240709003 |
[2] | ZENG Daoping, ZHENG Shaoxian, AN Tongbang, DAI Haiyang, MA Chengyong. Study on microstructure and low-temperature impact toughness of deposited metal form covered electrodes for 440 MPa grade high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 120-128. DOI: 10.12073/j.hjxb.20230318002 |
[3] | BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001 |
[4] | LI Liying, WANG Xiaolei, LIU Zhenhong, ZHOU Cong, HAN Bin. Microstructure and low temperature toughness of HAZ of domestic 06Ni9DR Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 91-96. DOI: 10.12073/j.hjxb.20200202002 |
[5] | LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96. |
[6] | WU Bingzhi, JING Wen, XU Yujun, SUN Jingtao, WANG Xuyou. Analysis on microstructure and impact absorbed energy of 960 MPa deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 77-80. |
[7] | LIU Renpei, CAI Yongchuan, WEI Yanhong, CHENG Zhonggeng. Effect of yttrium oxide on microstructure and mechanical properties of in high strength steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 92-96. |
[8] | ZHANG Lihong, CHEN Furong. Welding of low-temperature steel 07MnNiCrMoVDR and its low-temperature impact toughness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 68-72. |
[9] | WANG Guoping, CHEN Xuedong, WANG Bing. Low temperature toughness of ultra low-carbon 9Ni steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 37-40. |
[10] | Xu Hongji, Zhang Wenzhong, Wang Jichang, Zhang Wenyue. Microstructure and Toughness of Welded Joints Between Austenitic Manganese Steel and Rail Steel by Double Flash Butt Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 50-56. |