Advanced Search
BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001
Citation: BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001

Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel

More Information
  • Received Date: August 16, 2021
  • Available Online: May 09, 2022
  • Homogeneous specimens of the laser-arc hybrid welding heated affected zone (HAZ) of low alloy high strength steel were prepared by welding thermal simulation technology. The instrumented impact test and microstructure characterization technologies were used to analysis the relationship between the microstructure and toughness of the simulated specimens. The results showed that the simulated coarse grained HAZ (CGHAZ) and fine grained HAZ (FGHAZ) composed of lath martensite (LM) and the inter-critical HAZ (ICHAZ) compose of LM and grain boundary carbide, the sub-critical HAZ (SCHAZ) is comprised of tempered martensite. The peak temperature has little effect on the crack initiation energy, but large effect on the crack propagation energy. The simulated ICHAZ and CGHAZ specimens have poor resistance to crack propagation. When the peak temperature is the same, the impact energy of the simulated CGHAZ specimens have little change with various the cooling rates. The peak temperature mainly affects the crack stable propagation energy and the crack stable propagation energy decrease as the peak temperature increase. The fracture process of the simulated CGHAZ specimen was controlled by the crack propagation, and the block was the microstructure unit controlling the crack stable propagation.
  • Zeng Huilin, Xu Yuanbin, Wang Changjiang, et al. Research on laser-arc hybrid welding technology for long-distance pipeline construction[J]. China Welding, 2018, 27(3): 53 − 58.
    严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001

    Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001
    滕彬, 李小宇, 雷振, 等. 低合金高强钢激光-电弧复合热源焊接冷裂纹敏感性分析[J]. 焊接学报, 2010, 31(11): 61 − 64.

    Teng Bin, Li Xiaoyu, Lei Zhen, et al. Analysis on cold crack sensitivity of low alloy high strength steel weld by laser-arc hybrid welding[J]. Transactions of the China welding institution, 2010, 31(11): 61 − 64.
    王治, 王春明, 胡伦骥, 等. 激光-电弧复合焊接的应用[J]. 电焊机, 2006, 36(2): 38 − 41. doi: 10.3969/j.issn.1001-2303.2006.02.012

    Wang Zhi, Wang Chunming, Hu Lunji, et al. Application of laser-arc hybrid welding in industry[J]. Electric Welding Machine, 2006, 36(2): 38 − 41. doi: 10.3969/j.issn.1001-2303.2006.02.012
    Zhang Shenghai, Shen Yifu, Qiu Huijuan. The technology and welding joint properties of hybrid laser-TIG welding on thick plate[J]. Optics Laser Technology, 2013(48): 381 − 388.
    Hao Kangda, Zhang Chen, Zeng Xiaoyan, et al. Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel[J]. Journal of Materials Processing Technology, 2017(245): 7 − 14.
    Subashini L, Prabhakar K V P, Ghosh S, et al. Comparison of laser-MIG hybrid and autogenous laser welding of M250 maraging steel thick sections-understanding the role of filler wire addition[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3): 1581 − 1594.
    Bao Liangliang, Wang Yong, Han Tao. Microstructure and mechanical characterization of high strength low alloy steel welded joint by hybrid laser arc welding[C]//International Conference on Mechanical Engineering, Materials Science and Civil Engineering 2019. IOP Conference Series Materials science and Engineering. 2020: 12045.
    Bao Liangliang, Wang Yong, Han Tao. Study on microstructure-toughness relationship in heat affected zone of EQ70 steel by laser-arc hybrid welding[J]. Materials Characterization, 2020, 171: 110788.
    鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002

    Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. Transactions of the China Welding Institution, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002
    Swarr T, Kruss G. The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy[J]. Metallurgical Transactions A, 1976(7): 41 − 48.
    Inoue T, Matsuda S, Okamra Y, et al. The fracture of a low carbon tempered martensite[J]. Transactions of the Japan Institute of Metals, 1970, 11(1): 36 − 43. doi: 10.2320/matertrans1960.11.36
    Morris J W. On the ductile-brittle transition in lath martensitic steel[J]. Isij International, 2011, 51(10): 1569 − 1575. doi: 10.2355/isijinternational.51.1569
  • Related Articles

    [1]BAO Liangliang, LIU Fujian, XU Yanhong, ZHANG Xinming, OUYANG kai, HAN Tao. Investigation on microstructure and impact toughness of double-pass laser-arc hybrid welding heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 90-99. DOI: 10.12073/j.hjxb.20220303001
    [2]SHEN Yu, WAN Xiangliang, LIU Yu, LI Guangqiang, WU Kaiming. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 55-62. DOI: 10.12073/j.hjxb.2019400209
    [3]XIAO Xiaoming, PENG Yun, YANG Shuai, TIAN Zhiling. Effect of Cr content on deposited metal toughness of weathering steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 26-30.
    [4]CHAI Feng, YANG Cai-fu, ZHANG Yong-quan, SU Hang, XU Zhou. Coarse-grained heat affected zone microstructure and toughness of copper-bearing age-hardening steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 56-60.
    [5]LI Hong-wei, HE Chang-hong, PENG Yun, TIAN Zhi-ling, LIU Rong-pei, CHEN Yan-qing. High toughness submerged arc welding wire of ship steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 96-100.
    [6]XU Xue-li, XIN Xi-xian, SHI Kai, ZHOU Yong. Influence of welding thermal cycle on toughness and microstructure in grain-coarsening region of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 69-72.
    [7]YIN Gui quan, CHA Xian zhu, LU Bai zhong. Granular bainite in microstructures after welding and its effects on impact toughness in STE355 steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 55-58.
    [8]Zhang Xianhui, Jiao Wei, Tan Changying. HAZ Structure, Toughness and Characteristics to Hydrogen-Induced Cracking(HIC) of Steel 20MnNiMo[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 9-12.
    [9]Yan Cheng, Chen Jianhong, Luo Yongchun. Microstructures and toughness of local brittle zone of HSLA steel multipass weld metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 21-25.
    [10]Yang Yongxing, He Huaixing. THE HELPFUL EFFECT OF ANGLE RESTRAINT ON WELDING HAZ TOUGHNESS IN 15MnMoVNREs STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (1): 36-42.
  • Cited by

    Periodical cited type(10)

    1. 马一鸣,郭枭,韩莹,姜英龙,刘自成,甘洪丰,宋昌洪. 热输入对吉帕钢CGHAZ低温冲击韧性影响机理. 焊接学报. 2024(12): 90-98 . 本站查看
    2. 陈自振,李天伟,任建志,韩卫亮,范伟. 油气管道激光电弧焊工艺安全条件研究与应用. 安全、健康和环境. 2023(02): 22-27 .
    3. 张明鲲,王新辉,张云动,梁治国. 热处理对特种设备用高强钢激光–电弧复合焊接头氢脆断裂行为的影响研究. 精密成形工程. 2023(05): 115-122 .
    4. 牟梓豪,滕彬,徐锴. Q1400超高强钢激光-MAG复合焊与MAG组织及性能对比. 机械制造文摘(焊接分册). 2023(03): 25-30 .
    5. 鲍亮亮,刘福建,徐艳红,张新明,欧阳凯,韩涛. 双道次激光电弧复合焊热影响区微观组织与冲击韧性. 机械制造文摘(焊接分册). 2023(03): 9-17+24 .
    6. 曾道平,安同邦,郑韶先,马成勇. 热输入对船用440 MPa级低合金高强度钢焊缝组织及性能的影响. 焊接学报. 2023(08): 74-82+133 . 本站查看
    7. 王鹏博,张永强,蔡宁,付参,伊日贵,鞠建斌,陈炜煊,余洋. 马氏体含量对合金化热镀锌双相钢电阻点焊接头组织与性能的影响. 精密成形工程. 2023(10): 160-167 .
    8. 鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .
    9. 朱东芳,朱加雷,焦向东,苗春雨,周飞鸿,蔡志海,颜秉宇. 921A钢激光-MAG复合焊接头组织及性能. 焊接. 2022(09): 25-29+42 .
    10. 鲍亮亮,刘福建,徐艳红,张新明,欧阳凯,韩涛. 双道次激光电弧复合焊热影响区微观组织与冲击韧性. 焊接学报. 2022(12): 90-99+118-119 . 本站查看

    Other cited types(0)

Catalog

    Article views (324) PDF downloads (58) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return