Citation: | WANG Liwei, CHEN Shujun, XIAO Jun, WEI Pengsheng. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology-A preliminary study[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 71-74. |
关 桥. 焊接/连接与增材制造(3D打印)[J]. 焊接, 2014(5): 1-8. Guan Qiao. Welding/joining and additive manufacturing(3D printing)[J]. Welding & Joining, 2014(5): 1-8.
|
Zhang Y M, Chen Y, Li P, et al. Weld deposition-based rapid prototyping: a preliminary study[J]. Journal of Materials Processing Technology, 2003, 135(2): 347-357.
|
Zhang Y M, Li P, Chen Y, et al. Automated system for welding-based rapid prototyping[J]. Mechatronics, 2002, 12(1): 37-53.
|
Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17(1): 103-124.
|
Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148(1): 93-102.
|
Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy[J]. Internal Journal of Advanced Manufacturing Technology, 2011, 57: 597-603.
|
Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture[J]. Journal of Engineering Manufacture, 2012,226(6): 1042-1051.
|
Wang H, Jiang W, Valant M, et al. Microplasma powder deposition as a new solid freeform fabrication process[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217: 1641-1650.
|
Martina F, Mehnen J, Williams S W, et al. Investigation of the benefits of plasma deposition for the additive layerm Manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2012, 212(6): 1377-1386.
|
张海鸥, 徐继彭, 王桂兰, 等. 离子熔积直接快速制造金属原型技术[J]. 中国机械工程, 2003, 14(12): 1077-1079. Zhang Haiou, Xu Jipeng, Wang Guilan, et al. Directr rapid fabrication of metal prototype by powder plasma deposition manufacturing[J]. China Mechanical Engineering, 2003, 14(12): 1077-1079.
|
张海鸥, 邱立朋, 芮道满, 等. 金属零件熔积成形过程形状质量的可视化诊断[J]. 焊接学报, 2012, 33(9): 1-4. Zhang Haiou, Qiu Lipeng, Rui Daoman, et al. Isualized diagnosis for metallic parts deposition shaping quality[J]. Transactions of the China Welding Institution, 2012, 33(9): 1-4.
|
曾玲芳, 王桂兰, 张海鸥, 等. 离子多层熔积混相瞬态流场与温度场的模拟[J]. 焊接学报, 2007, 28(3): 36-40. Zeng Lingfang, Wang Guilan, Zang Haiou, et al. Simulation of multiphase transient fluid flow field and temperature field during plasma powder multi-layer deposition process[J]. Transactions of the China Welding Institution, 2007, 28(3): 36-40.
|
朱 胜. 柔性增材再制造技术[J]. 机械工程学报, 2013, 49(23): 1-5. Zhu Sheng. Mobileadditive remanufacturing [J].Journal of Mechanical Engineering, 2013, 49(23): 1-5.
|
杨 培, 吴 林, 徐滨士, 等. 弧焊机器人柔性再制造系统[J]. 焊接学报, 2006, 27(9): 5-8. Yang Pei, Wu Lin, Xu Binshi, et al. Flexible remanufac-turing system based on arc welding robot[J]. Transactions of the China Welding Institution, 2006, 27(9): 5-8.
|
Lesnewich A. Control of melting rate and metal transfer in gas-shielded metal arc welding-part 1-control of electrode melting rate[J]. Welding Journal,1958, 37(8): 343s-353s.
|
1. |
张刚,刘忠义,张程,朱明,石玗. 铝合金振镜激光-双脉冲CMT复合增材熔滴过渡特性. 机械工程学报. 2025(02): 120-129 .
![]() | |
2. |
刘焜,闫朝阳,陈树君,陈希章. 电弧增材热源及轨迹规划研究进展. 焊接学报. 2024(11): 21-34 .
![]() | |
3. |
段宣政,赵菲,王淑丹,赵广辉,吴志生. 国内外金属3D打印材料现状与发展. 焊接. 2020(02): 49-55+68 .
![]() | |
4. |
胡超雄,肖珺,陈树君. 电弧增材高频微锤击系统及工艺特性的初步物理模拟. 焊接. 2020(05): 6-9+61 .
![]() | |
5. |
占彬,冯曰海,何杰,刘思余. 碳钢双丝与单丝等离子弧增材制造成形及组织特征分析. 焊接学报. 2019(06): 77-81+164 .
![]() | |
6. |
张兆栋,曾庆文,刘黎明,孙承帅. 铝合金激光诱导MIG电弧增材制造成形尺寸规律. 焊接学报. 2019(08): 7-12+161 .
![]() | |
7. |
张炼,张兆栋,刘黎明. 316不锈钢TIG电弧增材制造成形规律研究. 焊接技术. 2018(04): 10-14 .
![]() | |
8. |
黄俊,宋恺,陈雨昕,刘其蒙,江俊龙,王克鸿. 高氮钢激光-MIG复合焊温度场数值模拟. 焊接技术. 2018(04): 22-26+7-8 .
![]() | |
9. |
迟大钊,马子奇,程怡,赵梓博,唐自衡. 3D打印镂空结构缺陷X射线CT检测. 焊接学报. 2018(11): 22-26+130 .
![]() |