Advanced Search
WANG Liwei, CHEN Shujun, XIAO Jun, WEI Pengsheng. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology-A preliminary study[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 71-74.
Citation: WANG Liwei, CHEN Shujun, XIAO Jun, WEI Pengsheng. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology-A preliminary study[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 71-74.

Droplet-targeting laser hybrid indirect arc for additive manufacturing technology-A preliminary study

More Information
  • Received Date: November 15, 2015
  • The contradiction between manufacturing accuracy and manufacturing efficiency is discussed in this paper. In order to solve this problem, a novel droplet-targeting laser hybrid indirect arc for additive manufacturing technology is proposed in which a couple of wires are melted using the alternating current with inter-wire indirect arc to achieve high deposition rate. On the other hand, droplets actively target the laser beam and detach from wire tip under the recoil pressure subjected to pulsed laser irradiating at desired position and with controlled mass for a precise bead forming. The process of alternative droplet growing at desired position are mathematically analyzed and then preliminary verified by experiment. By precisely controlling the wire feed speed and current frequency, the melting processat desired position and mass of wire is successfully obtained which is the fundamental for next-step for the droplet actively targeting laser.
  • 关 桥. 焊接/连接与增材制造(3D打印)[J]. 焊接, 2014(5): 1-8. Guan Qiao. Welding/joining and additive manufacturing(3D printing)[J]. Welding & Joining, 2014(5): 1-8.
    Zhang Y M, Chen Y, Li P, et al. Weld deposition-based rapid prototyping: a preliminary study[J]. Journal of Materials Processing Technology, 2003, 135(2): 347-357.
    Zhang Y M, Li P, Chen Y, et al. Automated system for welding-based rapid prototyping[J]. Mechatronics, 2002, 12(1): 37-53.
    Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17(1): 103-124.
    Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148(1): 93-102.
    Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy[J]. Internal Journal of Advanced Manufacturing Technology, 2011, 57: 597-603.
    Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture[J]. Journal of Engineering Manufacture, 2012,226(6): 1042-1051.
    Wang H, Jiang W, Valant M, et al. Microplasma powder deposition as a new solid freeform fabrication process[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217: 1641-1650.
    Martina F, Mehnen J, Williams S W, et al. Investigation of the benefits of plasma deposition for the additive layerm Manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2012, 212(6): 1377-1386.
    张海鸥, 徐继彭, 王桂兰, 等. 离子熔积直接快速制造金属原型技术[J]. 中国机械工程, 2003, 14(12): 1077-1079. Zhang Haiou, Xu Jipeng, Wang Guilan, et al. Directr rapid fabrication of metal prototype by powder plasma deposition manufacturing[J]. China Mechanical Engineering, 2003, 14(12): 1077-1079.
    张海鸥, 邱立朋, 芮道满, 等. 金属零件熔积成形过程形状质量的可视化诊断[J]. 焊接学报, 2012, 33(9): 1-4. Zhang Haiou, Qiu Lipeng, Rui Daoman, et al. Isualized diagnosis for metallic parts deposition shaping quality[J]. Transactions of the China Welding Institution, 2012, 33(9): 1-4.
    曾玲芳, 王桂兰, 张海鸥, 等. 离子多层熔积混相瞬态流场与温度场的模拟[J]. 焊接学报, 2007, 28(3): 36-40. Zeng Lingfang, Wang Guilan, Zang Haiou, et al. Simulation of multiphase transient fluid flow field and temperature field during plasma powder multi-layer deposition process[J]. Transactions of the China Welding Institution, 2007, 28(3): 36-40.
    朱 胜. 柔性增材再制造技术[J]. 机械工程学报, 2013, 49(23): 1-5. Zhu Sheng. Mobileadditive remanufacturing [J].Journal of Mechanical Engineering, 2013, 49(23): 1-5.
    杨 培, 吴 林, 徐滨士, 等. 弧焊机器人柔性再制造系统[J]. 焊接学报, 2006, 27(9): 5-8. Yang Pei, Wu Lin, Xu Binshi, et al. Flexible remanufac-turing system based on arc welding robot[J]. Transactions of the China Welding Institution, 2006, 27(9): 5-8.
    Lesnewich A. Control of melting rate and metal transfer in gas-shielded metal arc welding-part 1-control of electrode melting rate[J]. Welding Journal,1958, 37(8): 343s-353s.
  • Cited by

    Periodical cited type(9)

    1. 张刚,刘忠义,张程,朱明,石玗. 铝合金振镜激光-双脉冲CMT复合增材熔滴过渡特性. 机械工程学报. 2025(02): 120-129 .
    2. 刘焜,闫朝阳,陈树君,陈希章. 电弧增材热源及轨迹规划研究进展. 焊接学报. 2024(11): 21-34 . 本站查看
    3. 段宣政,赵菲,王淑丹,赵广辉,吴志生. 国内外金属3D打印材料现状与发展. 焊接. 2020(02): 49-55+68 .
    4. 胡超雄,肖珺,陈树君. 电弧增材高频微锤击系统及工艺特性的初步物理模拟. 焊接. 2020(05): 6-9+61 .
    5. 占彬,冯曰海,何杰,刘思余. 碳钢双丝与单丝等离子弧增材制造成形及组织特征分析. 焊接学报. 2019(06): 77-81+164 . 本站查看
    6. 张兆栋,曾庆文,刘黎明,孙承帅. 铝合金激光诱导MIG电弧增材制造成形尺寸规律. 焊接学报. 2019(08): 7-12+161 . 本站查看
    7. 张炼,张兆栋,刘黎明. 316不锈钢TIG电弧增材制造成形规律研究. 焊接技术. 2018(04): 10-14 .
    8. 黄俊,宋恺,陈雨昕,刘其蒙,江俊龙,王克鸿. 高氮钢激光-MIG复合焊温度场数值模拟. 焊接技术. 2018(04): 22-26+7-8 .
    9. 迟大钊,马子奇,程怡,赵梓博,唐自衡. 3D打印镂空结构缺陷X射线CT检测. 焊接学报. 2018(11): 22-26+130 . 本站查看

    Other cited types(17)

Catalog

    Article views (341) PDF downloads (132) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return