Advanced Search
YANG Jiajia, WANG Kehong, WU Tongli, ZHOU Xiaoxiao. Welding penetration recognition in aluminum alloy tandem arc welding based on visual characters of weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 49-52.
Citation: YANG Jiajia, WANG Kehong, WU Tongli, ZHOU Xiaoxiao. Welding penetration recognition in aluminum alloy tandem arc welding based on visual characters of weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 49-52.

Welding penetration recognition in aluminum alloy tandem arc welding based on visual characters of weld pool

More Information
  • Received Date: April 06, 2016
  • Penetration is one of the most important index in the welding quality evaluation. Nonuniform penetration is easily happened in aluminum alloy welding process because of the high sensitivity of aluminum to welding parameters. In the single-side welding and double-side molding experiment clear weld pool images of three kinds of penetration status-incomplete, complete and over penetration have been obtained by near-infrared visual sensing method. The characters of weld pool image such as weld width, weld half-length, molten pool area, perimeter and parabolic coefficient which is associated to weld penetration can be extracted by a special image processing algorithm. The penetration recognition model of aluminum alloy in tandem arc welding based on BP neural network was established and the result showed that the 5-13-3 structured BP neural network model has the highest recognition accuracy which is 89.05%.
  • Lu Na, Zhong jiyong, Chen huabin, et al. Real-time control of welding penetration during robotic GTAW dynamical process by audio sensing of arc length[J]. The International Journal of Advanced Manufacturing Technology, 2014(74): 235-249.
    刘立君, 兰 虎, 郑红艳. 基于神经网络熔透电弧声特征参数评价与选择[J]. 焊接学报, 2010, 31(3): 25-28. Liu Lijun, Lan Hu, Zheng Hongyan. Feature evaluation and selection of penetration arc sound signal based on neural network[J]. Transactions of the China Welding Institution, 2010, 31(3): 25-28.
    李亮玉, 陈树君, 殷树言. 基于弧焊温度场正面信息的熔透控制—三维稳定场熔透解析模型及验证[J]. 机械工程学报, 2000, 36(9): 37-41. Li Liangyu, Chen Shujun, Yin shuyan. Penetration control on top fece information of temperature field in arc welding—a three-dimentional analytical model of temperature field and experiment evaluation[J]. Journal of Mechanical Engineering, 2000, 36(9): 37-41.
    高进强, 武传松, 刘新峰. TIG焊背面熔宽的神经网络模糊控制[J]. 焊接学报, 2001, 22(5): 5-8. Gao Jinqiang, Wu Chuansong, Liu Xinfeng. Neuro-fuzzy control of back weld width in TIG welding[J]. Transactions of the China Welding Institution, 2001, 22(5): 5-8.
    毕淑娟, 兰 虎, 刘立君. 基于电弧声信号特征分析MAG焊熔透状态在线检测[J]. 焊接学报, 2010, 31(5): 17-20. Bi Shujuan, Lan hu, Liu lijun. On-line monitoring of penetration status based on characteristic analysis of arc sound signal in MAG welding[J]. Transactions of the China Welding Institution, 2010, 31(5): 17-20.
    吴松坪. 激光焊接过程熔透状态实时监测与模式分类[D]. 武汉: 华中科技大学, 2006.
  • Related Articles

    [1]TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001
    [2]CHEN Yuquan, GAO Xiangdong. Neural network compensation for micro-gap weld detection by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 33-36.
    [3]GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.
    [4]CHEN Zhenhua, SHI Yaowu, ZHAO Haiyan. Ultrasonic testing of spot weld based on spectrum analysis and artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 76-80.
    [5]WEN Jianli, LIU Lijun, LAN Hu. Penetration state recognition of MIG welding based on genetic wavelet neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 41-44.
    [6]DI Xinjie, LI Wushen, BAI Shiwu, LIU Fangming. Metal magnetic memory signal recognition by neural network for welding crack[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 13-16.
    [7]YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45.
    [8]PENG Pai, WU Lin, TIAN JIN-Song, WANG Xue-feng, FENG Ying-jun. Application of Neural Networks in Welding Parameters's Planning of Robots[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 39-42.
    [9]CHEN Yi-ping, HU De-an, MA Lin, LI Tang-bai. Neural Network Model for DC Spot Welding of Aluminum-alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 20-23.
    [10]Peng Jinning, Chen Bingsen, Zhu Ping. Intelligent Design of Welding Procedure Parameters Based on Neural Networks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 21-26.
  • Cited by

    Periodical cited type(11)

    1. 沈莹吉,姜梦,冯杰才. 焊接熔池图像采集及边缘几何形态研究. 兵器材料科学与工程. 2024(03): 69-73 .
    2. 刘秀航,叶广文,黄宇辉,张艳喜,冯桑,高向东. 激光-MIG复合焊根部驼峰缺陷预测. 机械制造文摘(焊接分册). 2023(03): 18-24 .
    3. 冯志强,袁浩,刘鹏,向晓宏,曾宪平,黎欣,黎泉. 变间隙MAG焊熔透状态的粗糙-模糊控制方法. 焊接学报. 2023(11): 22-35+130-131 . 本站查看
    4. 谢本凯,张笑笑,蔡水涌,周强. 虚拟焊接训练技术研究进展. 焊接. 2022(05): 43-51 .
    5. 刘秀航,叶广文,黄宇辉,张艳喜,冯桑,高向东. 激光-MIG复合焊根部驼峰缺陷预测. 焊接学报. 2022(12): 47-52+99+115-116 . 本站查看
    6. 金伟,赵红霞,郭于明. 熔透状态识别预测与控制技术研究现状. 中国工程机械学报. 2021(03): 217-221 .
    7. 任乐,张爱华,常东东,何倩玉,马晶. 基于电弧声的超窄间隙焊接熔合状态识别. 电焊机. 2021(07): 11-16+23+113-114 .
    8. 春兰,洪海涛,包晓艳. 脉冲变极性等离子弧焊接信号的检测与分析. 热加工工艺. 2019(11): 143-146+150 .
    9. 孙福建,冯曰海,刘思余. WPAAM弧长智能预测与过程监控系统设计. 电焊机. 2018(06): 8-12 .
    10. 冯宝,覃科,蒋志勇. 基于L1/L2极限学习机的熔池熔透状态识别. 焊接学报. 2018(09): 31-35+130 . 本站查看
    11. 马可,薛龙,黄军芬,黄继强,邹勇,姜天胜. GMAW自动焊熔透影响因素分析及多元回归预测. 机械工程学报. 2018(18): 55-61 .

    Other cited types(15)

Catalog

    Article views (387) PDF downloads (183) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return