Advanced Search
HUANG Yong, HAO Yanzhao, QU Huaiyu, LIU Ruilin. Test and analysis of arc pressure measurement in coupling arc electrode TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 33-36.
Citation: HUANG Yong, HAO Yanzhao, QU Huaiyu, LIU Ruilin. Test and analysis of arc pressure measurement in coupling arc electrode TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 33-36.

Test and analysis of arc pressure measurement in coupling arc electrode TIG welding

More Information
  • Received Date: September 16, 2012
  • A kind of coupling arc tungsten electrode was developed to decrease arc pressure remarkably,avoid undercut and humping weld.Adopting this method, high-quality TIG welding with relative higher speed can be achieved.The TIG arc pressure of this kind of welding process was tested to investigate the influence of the parameters on distribution of arc pressure.Compared with the traditional TIG arc,the TIG arc pressure with coupling arc electrode is much lower with the same parameters, and decreases with the increase of arc length,the increase of electrode extended length,the decrease of current,the increase of the electrode gap width and the increase of the electrode diameters.The arrangement of the influence in decreasing order is current, electrode extended length,arc length and electrode diameter, electrode gap width.
  • Related Articles

    [1]CHANG Chuanchuan, ZHANG Tiancang, LI Ju, LIU Jianjun. Microstructure and properties of linear friction welded joint of hyperoxia TC4/TC17 dissimilar titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 109-114,120. DOI: 10.12073/j.hjxb.2019400322
    [2]HE Jianchao, ZHANG Tiancang, LI Ju. Effect of heat treatment on microstructure and hardness of Ti2AlNb linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 119-124. DOI: 10.12073/j.hjxb.2019400111
    [3]ZHANG Dan, XIA Peiyun, CUI Fan, YIN Yuhuan. Micro friction stir welding technology of 6061-T6 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 102-106. DOI: 10.12073/j.hjxb.2019400080
    [4]WANG Tao, JING Hongyang, XU Lianyong, HAN Yongdian, LI Meng. Calculation of Brinell hardness for P92 base metal and welded metal using Leeb hardness mearurement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 87-90.
    [5]ZHANG Jing, HAN Wentuo, CHANG Yongqin, WAN Farong. Microstructure and mechanical properties in friction stir welded nanostructured oxide dispersion strengthened steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 9-11,40.
    [6]ZHAO Huihui, FENG Xiaosong, XIONG Yanyan, SU Guoyou. Microstructure and properties of micro friction stir welded joint of Al-alloy ultra thin plate with zero tilt angle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 47-50.
    [7]YANG Jianguo, WANG Jiajie, DONG Zhibo, FANG Hong yuan, ZHOU Lipeng. Influence of weld shaping with trailing impact rolling on hardness and residual stress of under-matched equal loadcarrying joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 37-40.
    [8]NIU Ruifeng, LIN Binghua, WANG Yani, YANG Xingfei. Evaporation loss of Mg element in pulsed laser welding of 5A05 aluminum alloy and distribution of micro-hardness of welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 81-84.
    [9]FU Zhi-hong, HE Di-qiu, ZHOU Peng-zhan, HU Ai-wu. Structure investigation of friction stir welding of 7A52 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 65-68.
    [10]YAO Ze-kun, ZHANG Mei-lin, LIANG Xin-min, GUO Hong-zhen. Influence of heat and force coupling action on micro-hardness and microstructures at weld seam of TAC-1B/TC11 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 125-128.

Catalog

    Article views (184) PDF downloads (71) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return