Citation: | WANG Tao, JING Hongyang, XU Lianyong, HAN Yongdian, LI Meng. Calculation of Brinell hardness for P92 base metal and welded metal using Leeb hardness mearurement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 87-90. |
赵钦新, 朱丽慧. 超临界锅炉耐热钢研究[M]. 北京:机械工业出版社, 2009.
|
杨富, 章应霖. 新型耐热钢焊接[M]. 北京: 中国电力出版社, 2006.
|
Wang S S, Peng D L, Chang L, et al. Enhanced mechanical properties induced by refined heat treatment for 9Cr-0.5Mo-1.8Mo martensitic heat resistant steel[J]. Materials & Design, 2013, 50: 174-180.
|
刘正东, 程世长, 干勇, 等. 中国600℃蒸汽参数火电机组用锅炉钢管国产化研制进展[J]. 钢铁, 2010, 45(10): 1-7. Liu Zhengdong, Cheng Shichang, Gan Yong, et al. Research and development of advanced boiler steel tubes and pipes used for 600℃ USC power plants in china[J]. Iron and Steel, 2010, 45(10): 1-7.
|
ASM(American Society of Testing Materials), ASTM A335/A335M-15a, Standard specification for seamless ferritic alloy-steel pipe for high-temperature service[S]. West Conshohocken PA: ASTM International, 2015.
|
Jbrozda. New generation creep-resistant steels, their weld ability and properties of welded joints: T/ P92 steel[J]. Welding International, 2005, 19(1): 5-13.
|
Fujio Abe. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Supercriticalience and Technology of Advanced Materials, 2008, 9(1): 1-2.
|
A be F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013002.
|
[1] | LE Jian, ZHANG Hua, ZHANG Qiqi, WU Jinhao. Overhead weld tracking by robots based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 56-60. |
[2] | MAO Zhiwei, LUO Xiangbin, CHEN Bin, WU Xun. Analysis and simulation study on welding torch attitude based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 6-10. |
[3] | HONG Bo, LIU Jian, HONG Yuxiang, WANG Qian. Study on deviation prediction of seam tracking using magnetron rotating arc sensor with Kalman filter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 55-58. |
[4] | LE Jian, ZHANG Hua, YE Yanhui, PENG Yuan. Fillet weld tracking based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 5-9. |
[5] | GAO Yanfeng, XIAO Jianhua, ZHANG Hua. Ripple line fillet seams tracking control of a mobile robot for container welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 49-52. |
[6] | LI Zhigang, ZHANG Hua, Gao Yanfeng. Improvement of characteristic harmonic method in rotational arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 53-56. |
[7] | GAO Yanfeng, ZHANG Hua, XIAO Jianhua. Identification of welding torch attitude based on rotational arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 81-84. |
[8] | GAO Yanfeng, ZHANG Hua, MAO Zhiwei, PENG Junfei. Identification of welding torch deviation with rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 57-60. |
[9] | HONG Bo, YUAN Can, PAN Ji-luan, QU Yue-bo. Wavelet signal processing system in arc-sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 61-63,68. |
[10] | Wu Shide, Liao Baojian, Pan Jiluan. High Speed Rotating Arc Sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 61-66. |