Advanced Search
TAI Feng, GUO Fu, SHEN Hao, Han Mengting. Effect of heating rate on microstructure and mechanical properties of composite solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 79-82.
Citation: TAI Feng, GUO Fu, SHEN Hao, Han Mengting. Effect of heating rate on microstructure and mechanical properties of composite solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 79-82.

Effect of heating rate on microstructure and mechanical properties of composite solder joints

More Information
  • Received Date: November 18, 2007
  • The different soldering processes condition has been found to play a significant role in determining the intermetallic compound (IMC)morphology and dimension in some metallic particulate (such as Ni, Ag, and Cu metallic particles)reinforced composite solders, and the morphology and dimension of IMCs around the reinforced particulate have an influence on mechanical propertirs of composite solder joints.The current study was to research the morphology of the IMC formed around the metallic Cu reinforced particulates incorporated in the Sn-3.5Ag solder by mechanically, and the mechanical property of composite solder joints.Experimental results indicated that the different heating rate have no influence on the morphology of the IMCs formed around Cu reinforced particulate, but just have effect on the thickness of the IMCs and mechanical property of composite solder joints.The relationship between dimension of IMCs and mechanical property in different processing condition was established.
  • Related Articles

    [1]ZHANG Dong1,2, CHEN Maoai1, WU Chuansong1. Optimization of waveform parameters for high speed CMT welding of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 118-122. DOI: 10.12073/j.hjxb.2018390027
    [2]WU Xiangyang, ZHANG Zhiyi, QI Weichuang, TIAN Renyong, SHI Chunyuan. Optimization of narrow groove plasma-MAG hybrid welding process parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 116-119. DOI: 10.12073/j.hjxb.20170526
    [3]HUANG Pengfei, XIONG Wei, YAN Hengyu, LU Zhenyang. GMAW parameter optimization for lap joints of dissimilar AHSS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 1-4.
    [4]LU Zhenyang, TANG Chao, XIONG Wei, HUANG Pengfei. Parameter optimization for MAG of DP780[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 9-12.
    [5]WANG Hongxiao, SHI Chunyuan, WANG Chunsheng, WANG Ting. Optimization of laser welding parameters of stainless steel vehicle body based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 69-72.
    [6]SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108.
    [7]ZHANG Jianjun, LI Wushen, DI Xinjie, WU Qiang. Prediction of performance of heat affected zone and optimization on welding parameters of 07MnNiCrMoVDR steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 29-32.
    [8]LIU Xue-mei, YAO Jun-shan, ZHANG Yan-hua. Optimization for friction surfacing parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 99-102.
    [9]ZHANC Ben-sheng, ZHOU Hong, YU Yong-li. Optimizing Parameters or A New Sprying Material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 58-60.
    [10]Gang Tie, Takayoshi OHJI. On-line idcntification of mathematical model parameters and selection of optimized welding parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (4): 225-230.

Catalog

    Article views (208) PDF downloads (53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return