Advanced Search
GONG Jianming, JIANG Wenchun, TANG Jianqun, TU Shantong. Numerical simulation of hydrogen diffusion in low alloy steel welded joint under wet H2S environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 5-8.
Citation: GONG Jianming, JIANG Wenchun, TANG Jianqun, TU Shantong. Numerical simulation of hydrogen diffusion in low alloy steel welded joint under wet H2S environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 5-8.

Numerical simulation of hydrogen diffusion in low alloy steel welded joint under wet H2S environment

More Information
  • Received Date: July 12, 2006
  • Hydrogen diffusion coefficients in weld metal, heat affected zone (HAZ) and base metal of the 16MnR low alloy steel welded joint were measured by electrochemical permeation technique.Based on finite element code-ABAQUS, the hydrogen diffusion in welded joint was numerically simulated.The effects of welding residual stress and microstructure on the hydrogen diffusion were taken into account.The variation of hydrogen concentration with time was obtained.The results show that the hydrogen diffusion coefficients and welding residual stress were much larger in weld metal and HAZ where the hydrogen accumulates, which can decrease the material properties and cause the cracking and damage related to hydrogen under wet H2S environment.
  • Related Articles

    [1]LIU Shanzhong, WANG Yunhao, ZHAO Yulong, ZHANG Keke. Research on closed-loop control system of CO2 shielded arc welding inverter power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 10-14.
    [2]DU Hongwang, LIU Zheng, ZHAO Yanan, XU Jianwei, LIU Gang. Fuzzy PI speed control for welding wire feed system based on state observer and feedforward[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 85-88,92.
    [3]ZHU Guorong, QIAN Cuifeng, DUAN Shanxu, KANG Yong. Composite control of sliding mode and PI for inverter arc welding/cutting power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 53-57.
    [4]YE Jian-xiong, ZHANG Hua. Application of fuzzy-PID control on seam tracking for welding-robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 97-100.
    [5]HE Jian-ping, SUN Guang, ZHANG Chun-bo, WU Yi-xiong, JIAO Fu-jie. Parameters adjusting of PI control to GTAW inverter system based on simulink study[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 99-103.
    [6]LEI YU-cheng, ZHANG Cheng, CHENG Xiao-nong, CHEN Xi-zhang. Study in GTAW of fuzzy neural controller based genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 47-50.
    [7]Han Zandong, Du Dong, Zhang Renhao, et al, . Fuzzy and PID Control of Droplet Transfer Frequency in CO2 Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 21-24.
    [8]Zhang Jiaying, Jiang Lipei, Zhang Xianghong. Fuzzy Control System for MIG Weld Pool Width[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 63-69.
    [9]Hu Shengsun, Hou Wenkao, Sun Dong, Yan Wende. SAW Seam Tracking System with Ultrasonic Sensor Using Fuzzy-P Control Theory[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (2): 40-45.
    [10]Huang Shisheng, He Jianfeng, Song Yonglun. Design of Fuzzy Logic Controller for Bead Width of GTAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (2): 94-98.

Catalog

    Article views (291) PDF downloads (53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return