Advanced Search
ZENG Lingfang, WANG Guilan, ZHANG Haiou, KONG Fanrong. Simulation of multiphase transient fluid flow field and temperature field during plasma powder multi-layer deposition process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 36-40.
Citation: ZENG Lingfang, WANG Guilan, ZHANG Haiou, KONG Fanrong. Simulation of multiphase transient fluid flow field and temperature field during plasma powder multi-layer deposition process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 36-40.

Simulation of multiphase transient fluid flow field and temperature field during plasma powder multi-layer deposition process

More Information
  • Received Date: April 02, 2006
  • A 2D transient mathematical model was developed to investigate plasma powder deposition shaping process, presenting the free surface evolution of multilayer and the simulation of fluid flow and heat transfer.The Level-Set approach was adopted to deal with some factors such as deposited track, liquid/vapor interface, which considered surface tension gradient (the major driving forces for the melt flow), interface curvatures, buoyancy and convection heat loss.The SIMPLEC algorithm was used for solving the governing equations.The results obtained by the simulation were in agreement with those measured in experiment, and the effect of the deposition process parameters such as input current, scanning velocity and powder feeding rate on the profile of deposition layer and shaping quality was analyzed.
  • Related Articles

    [1]XU Lianyong, LONG Zhiping, ZHAO Lei, HAN Yongdian, PENG Chentao. Effect of stress concentration at weld toes on combined high and low cycle fatigue of EH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 1-9. DOI: 10.12073/j.hjxb.20230619003
    [2]HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037
    [3]DENG Caiyan, NIU Yaru, GONG Baoming, WANG Dongpo, ZHAO Junmei. Improvement of loading ultrasonic peening on fatigue strength of welded joints under high stress ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 72-76. DOI: 10.12073/j.hjxb.20150713001
    [4]ZHENG Lijuan, XIANG Long, FU Yuming. Analysis of impacting on pulse current discharge for welded joint's strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 27-30.
    [5]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.
    [6]ZHANG Yuanjie, PENG Yun, MA Chengyong, PENG Xinna, TIAN Zhiling, LU Jiansheng. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 53-56.
    [7]ZHAO Zhili, SUN Fenglian, WANG Lifeng, TIAN Chongjun. Design of lower stress and flexible CCGA solder joints and reliability expectancy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 53-56.
    [8]GAO lili, XUE Songbai, ZHANG Liang, SHENG Zhong. Finite element analysis on the soldered joint reliability of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 73-76.
    [9]YANG Fengping, SUN Qin. Analysis of stress concentration in weld of sheets welded by friction stir welding using finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 109-112.
    [10]ZHAO Xin-wei, LUO Jin-heng, LU Min-xu, LI He-lin, ZHANG Tian-zhong. Stress analysis method of weld angular distortion for spiral welding pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 25-28,32.

Catalog

    Article views (173) PDF downloads (88) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return