Advanced Search
DU Ze-yu, TAO Yong-yin, LI Yun-tao, LI Jian-jun. Sulfide stress corrosion cracking and weldability of domestic X70 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 13-16,21.
Citation: DU Ze-yu, TAO Yong-yin, LI Yun-tao, LI Jian-jun. Sulfide stress corrosion cracking and weldability of domestic X70 pipeline steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 13-16,21.

Sulfide stress corrosion cracking and weldability of domestic X70 pipeline steels

More Information
  • Received Date: March 10, 2004
  • Constant load test and implant test were utilized to study the sulfide stress corrosion cracking (SSCC) in the sulfide solution and weldability of domestic X70 pipeline steels. Electronic microscopic testing was used to analysis the fracture morphology in implant tests. The results suggested that it is element Mn, P, not element C that lead to domestic X70 pipeline steels with different chemical compositions have different resistance to SSCC. The σcr (critieal stress) of the joint produced by LINCOLN E6010 welding rod is 630 MPa, 610 MPa with preheating(70℃) or without preheating respectively. The appearance of implant fracture is charaterized by civility, permit cleavage and cleavage.
  • Related Articles

    [1]SUI Chufan, LIU Zhengjun, AI Xingyu. Effect of ultrasonic vibration on welding hot crack of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 122-128. DOI: 10.12073/j.hjxb.20220106002
    [2]CHEN Genyu, ZHANG Yan, LEI Ran. Testing of hot crack using laser-MAG combined welding for 42CrMo steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 61-66. DOI: 10.12073/j.hjxb.2019400182
    [3]YU Hanchen<sup>1</sup>, YAN Han<sup>2</sup>, LUAN Tianmin<sup>1</sup>, FAN Wei<sup>1</sup>, ZHANG Huiwen<sup>3</sup>. Investigation on the cause of the hot cracking in GTA welding of thick copper plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 87-91. DOI: 10.12073/j.hjxb.2018390207
    [4]GONG Lian, ZHU Liang, ZHOU Chao. Effects of welding parameters on ultra-narrow gap welding hot cracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 93-96.
    [5]LI Yinan, YAN Jiuchun, GUO Feng, PENG Zilong. Formation process of hot cracking in copper He shielding gas tungsten welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 43-47.
    [6]LI Jun, YANG Jianguo, TAN Xing, FANG Hongyuan. Experimental investigation on controlling welding hot crack with welding with trailing rotating extrusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 45-48.
    [7]Liu Weiping, Tian Xitang, Zhang Xiuzhi. A new method for prevention of weld hot cracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (2): 106-111.
    [8]Si Zhongyao, Yu Erjing, Ying Huiyun, Liu Xingzhi, Liu Quan. STUDY OF THE TEMPERATURE RAGES OF HOT CRACKING FORMATION IN THE WELD METAL OF LOW-CARBON STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (2): 87-94.
    [9]Gu Yuxi, Qi Fuguo, Yin Yousheng, Ding Hongtai, Zheng Zhongjian, Shi Lianying. EFFECTS OF ALLOY ELEMENTS ON WELD HOT CRACKING SUSCEPTIBILITY IN THE SUBMERGED ARC WELDING OF 12SiMoVNb HYDROGEN-RESISTANT STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1984, (4): 179-187.
    [10]Zhang Yansheng, Zhong Zugui. THE METALLURGICAL AND TECHNOLOGICAL FACTORS AFFECTING THE HOT CRACKING IN TIG WELDING OF SUPERALLOYS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1982, (2): 57-64.

Catalog

    Article views (214) PDF downloads (89) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return