Citation: | WU Jiawei, LI Haoyue, XIA Hongbo, JIAO Junke. Interface microstructure and fracture behavior of aluminum/titanium laser welding-brazing under different Si element contents[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 136-144. DOI: 10.12073/j.hjxb.20240829002 |
This research successfully achieved the butt joining of aluminum/titanium dissimilar metals using laser welding-brazing technology with filler wires containing different Si content (pure Al, AlSi5, AlSi12). The study investigated the influence of Si content on weld formation, interfacial intermetallic compound (IMC), mechanical properties, and fracture behavior of joints. The results indicated that as the Si content increased, thickness of interfacial IMC gradually decreased while Si aggregation occurred along the IMC layer. The IMC layer transformed from Ti-Al binary phases (TiAl3) to Ti-Al-Si ternary phases (Ti(Al,Si)3) with the addition of Si. The tensile strength of joints gradually increased with the increment of Si content, reaching a maximum of 197.69 MPa when AlSi12 was adopted. When the joint was subjected to tensile force, thicker IMC layer formed at the upper part of interface became the weak zone of the joint's mechanical properties, prone to crack initiation, leading to brittle fracture of the joint and ultimately affecting its tensile strength. Due to the increased Si content, the reduced thickness of the IMC layer mitigated the negative effects of its microstructure on the tensile strength of the joint, shifting the fracture path from the brazing interface to the heat-affected zone of the aluminum base material.
[1] |
邱超奕, 姚雪青, 游仪. 低空经济“飞”到百姓身边[N]. 人民日报, 2024-07-24(010).
Qiu Chaoyi, Yao Xueqing, You Yi. Low Altitude economy "flies" to the people's side[N]. People's Daily , 2024-07-24(010).
|
[2] |
徐全斌, 刘诗园. 国外航空航天领域钛及钛合金牌号及应用[J]. 世界有色金属, 2022(16): 96 − 99.
Xu Quanbin, Liu Shiyuan. Grades of titanium and titanium alloys developed in western countries and their applications in the aerospace industry[J]. World Nonferrous Metals, 2022(16): 96 − 99
|
[3] |
Rodriguez R I, Jordon J B, Allison P G, et al. Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys[J]. Materials & Design, 2015, 83: 60 − 65.
|
[4] |
郭克星. 钛合金的制备和应用[J]. 热处理, 2023, 38(5): 8 − 12. doi: 10.3969/j.issn.1008-1690.2023.05.002
Guo Kexing. Fabrication and applications of titanium alloy[J]. Heat Treatment, 2023, 38(5): 8 − 12 doi: 10.3969/j.issn.1008-1690.2023.05.002
|
[5] |
陈文. 先进铝合金在A380上的应用[J]. 航空维修与工程, 2005(2): 40 − 41. doi: 10.3969/j.issn.1672-0989.2005.02.017
Chen Wen. Application of advanced aluminum alloys in A380 structures[J]. Aviation Maintenance & Engineering, 2005(2): 40 − 41 doi: 10.3969/j.issn.1672-0989.2005.02.017
|
[6] |
李晓红, 毛唯, 曹春晓, 等. 钎焊与扩散焊在航空制造业中的应用[J]. 航空制造技术, 2004(11): 28 − 32.
Li Xiaohong, Mao Wei, Cao Chunxiao, et. al. Application of brazing and diffusion welding in aviation manufacturing industry[J]. Aeronautical Manufacturing Technology, 2004(11): 28 − 32.
|
[7] |
Schubert E, Klassen M, Zerner I, et al. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry[J]. Journal of Materials Processing Technology, 2001, 115(1): 2 − 8. doi: 10.1016/S0924-0136(01)00756-7
|
[8] |
Chen X, Lei Z, Chen Y, et al. Microstructure and tensile properties of Ti/Al dissimilar joint by laser welding-brazing at subatmospheric pressure[J]. Journal of Manufacturing Processes, 2020, 56: 19 − 27. doi: 10.1016/j.jmapro.2020.04.062
|
[9] |
Zhang Y, Huang J, Ye Z, et al. Influence of welding parameters on the IMCs and the mechanical properties of Ti/Al butt joints welded by MIG/TIG double-sided arc welding-brazing[J]. Journal of Alloys and Compounds, 2018, 747: 764 − 771. doi: 10.1016/j.jallcom.2018.03.119
|
[10] |
Zhou L, Yu M, Zhao H, et al. Dissimilar friction stir welding of AA6061 and Ti6Al4V alloys: A study on microstructure and mechanical properties[J]. Journal of Manufacturing Processes, 2019, 48: 119 − 126. doi: 10.1016/j.jmapro.2019.09.043
|
[11] |
兰天. 铝/钛异种金属激光焊接研究[D]. 北京: 北京工业大学, 2009.
Lan Tian. Study of dissimilar metal AV/Ti laser welding[D]. Beijing: Beijing University of Technology, 2009.
|
[12] |
Zhou J, Zhou D, Liu J. Effect of oscillating laser beam on the interface and mechanical properties of Ti/Al fusion welding joint[J]. Journal of Materials Research and Technology, 2022, 19: 1993 − 2007. doi: 10.1016/j.jmrt.2022.05.162
|
[13] |
李鹏. TC4/6061异种合金双焦点激光熔钎焊组织及接头性能调控[D]. 哈尔滨: 哈尔滨工业大学, 2022.
Li Peng. Microstructure and mechanical property regulation of dual-spot laser welded-brazed TC4/6061 dissimilar metals joint[D]. Harbin: Harbin Institute of Technology, 2022.
|
[14] |
Li P, Lei Z, Zhang X, et al. Effects of laser power on the interfacial intermetallic compounds and mechanical properties of dual-spot laser welded-brazed Ti/Al butt joint[J]. Optics and Laser Technology, 2020, 124: 105987. doi: 10.1016/j.optlastec.2019.105987
|
[15] |
Zhang Z, Huang J, Yao C, et al. Effect of Ag alloying on the microstructure and mechanical properties of laser welded-brazed Ti/Al dissimilar joints[J]. Materials Science and Engineering: A, 2022, 848: 143359. doi: 10.1016/j.msea.2022.143359
|
[16] |
Tian R, Chen S, Yang B, et al. Elemental diffusion, atomic substitution mechanisms and interfacial fracture behavior in laser welded-brazed Al/Ti[J]. Materials Characterization, 2023, 202: 112998. doi: 10.1016/j.matchar.2023.112998
|
[17] |
Xia H B, Zhao X Y, Tan C W, et al. Effect of Si content on the interfacial reactions in laser welded-brazed Al/steel dissimilar butted joint[J]. Journal of Materials Processing Technology, 2018, 258: 9 − 21. doi: 10.1016/j.jmatprotec.2018.03.010
|
[18] |
Yang B, Lin D, Xia H, et al. Welding characterization evolutions for dual spot laser welded-brazed Al/steel joint with various spot configurations[J]. Journal of Materials Research and Technology-Jmr& T, 2022, 19: 697 − 708.
|
[19] |
王佳杰, 宋晓国, 武鹏博, 等. 铝/钛异种金属激光/激光-CMT复合熔钎焊工艺及其组织与力学性能[J]. 焊接学报, 2023, 44(2): 54 − 60.
Wang Jiajie, Song Xiaoguo, Wu Pengbo, et al. Laser/laser-CMT composite welding-brazing process and its microstructure and mechanical properties of aluminum/titanium dissimilar metals[J]. Transactions of the China Welding Institution, 2023, 44(2): 54 − 60.
|
[20] |
夏鸿博. 铝/钢激光熔—钎焊的界面断裂行为及IMC层调控方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
Xia Hongbo. Research on interfacial fractureing behaviors and adjusted method of IMC layer for the laser welded-brazed Al/steel[D]. Harbin: Harbin Institute of Technology, 2019.
|
[21] |
陈树海. Ti/Al异种合金激光熔钎焊工艺与连接机理[D]. 哈尔滨: 哈尔滨工业大学, 2009.
Chen Shuhai. Research on technology and mechanism of laser welding-brazing for Ti/Al dissimilar alloys[D]. Harbin: Harbin Institute of Technology, 2009.
|
[22] |
Chen S H, Li L Q, Chen Y B, et al. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process[J]. Journal of Alloys and Compounds, 2011, 509(3): 891 − 898. doi: 10.1016/j.jallcom.2010.09.125
|
[23] |
Li P, Lei Z L, Zhang X R, et al. Influence of Si content on interfacial reactions and mechanical properties of dual-spot laser welded-brazed Ti/Al joints[J]. Journal of Manufacturing Processes, 2020, 56: 950 − 966. doi: 10.1016/j.jmapro.2020.06.001
|
[1] | LIU Xi, CHEN Guangran, MENG Qingyu, GONG Baoming, WANG Can. Fatigue performance analysis of weld toe and root of thick T-joint based on local strain energy density[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 74-80. DOI: 10.12073/j.hjxb.20191112001 |
[2] | WANG Dongpo, CAO Shu, DENG Caiyan. Notch stress concepts for fatigue assessment of welded portal crane rail structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 5-8. |
[3] | LIU Gang, HUANG Ruxu, HUANG Yi. Equivalent hot spot stress approach for multiaxial fatigue strength assessment of complex welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 10-14. |
[4] | WANG Wenxian, HE Xiuli, ZHANG Hongxia, LI Jinyong. Fatigue assessment of welded joints of AZ31B magnesium alloy by using critical distance method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 13-16,21. |
[5] | LI Xiangwei, ZHAO Wenzhong, ZHENG Chengde. Weld fatigue life assessment based on fuzzy quality evaluation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 49-52. |
[6] | PENG Fan, YAO Yunjian, GU Yongjun. Influence factors of fatigue strength assessment for welded joints by hot spot stress approach[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 83-86. |
[7] | WU Qi, QIU Huiqing, WANG Weisheng. Fatigue analysis of welded joints by method of structural stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 101-105. |
[8] | WU Bing, YANG Xin-qi, JIA Fa-yong, HUO Li-xing. Fatigue assessment of duplex stainless steel welded joints by volumetric approach[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 7-10. |
[9] | YANG Xin qi, ZHANG Yian xin, HUO Li xing, ZHANG Yu feng. Research progress on fatigue assessment of welded joints by local approaches[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 82-86. |
[10] | WANG Wen-xian, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. Effect of Transformation Temperature on Improving the Fatigue Strength of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 15-18. |