Citation: | SHI Yonghua, WANG Tianxu, ZHAN Jiatong. Research status of K-TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 35-44. DOI: 10.12073/j.hjxb.20240703002 |
With the continuous advancement of technology, K-TIG welding has become one of the most widely used high-efficiency welding technologies in modern industry due to its significant advantages in medium and thick plate welding. K-TIG welding has broad application prospects in fields with stringent welding quality requirements, such as aerospace, nuclear industry, petrochemical, and shipbuilding. This paper systematically reviews the development of K-TIG welding and its current applications in various materials, including stainless steel, nickel alloys, and titanium alloys. Additionally, the development of intelligent welding technologies presents new opportunities for K-TIG welding. Advanced technologies such as real-time monitoring, automatic control, and seam tracking have further enhanced the precision and reliability of the welding process. The paper also explores the current state of penetration pool recognition technology and seam tracking technology, which play important roles in improving welding quality and efficiency. Through a comprehensive analysis of K-TIG welding technology, this paper aims to provide a reference for future research and offer guidance for practical applications.
[1] |
Shi Y H, Cui Y X, Cui S W, et al. A novel high-efficiency keyhole tungsten inert gas (K-TIG) welding: principles and practices[J]. Welding Technology, 2021: 313 − 367.
|
[2] |
陈金荣. 磁控K-TIG焊接电弧形态及焊缝成形研究[D]. 广州: 华南理工大学, 2021.
Chen Jinrong. Research on arc shape and weld formation of magnetic-controlled K-TIG welding [D].Guangzhou: South China University of Technology, 2021.
|
[3] |
占爱文. K-TIG焊接熔池和锁孔视觉检测与熔透状态识别的研究[D]. 广州: 华南理工大学, 2021.
Zhan Aiwen. Research on visual detection and penetration state identification of K-TIG welding pool and keyhole [D]. Guangzhou: South China University of Technology, 2021.
|
[4] |
任冠鹏, 杨青云, 徐家磊, 等. Gr.12钛合金K-TIG焊接接头的组织和力学性能研究[J]. 热加工工艺, 2022, 51(21): 131 − 133.
Ren Guanpeng, Yang Qingyun, Xu Jialei, et al. Study on microstructure and mechanical properties of Gr.12 titanium alloy K-TIG welded joint[J]. Thermal processing, 2022, 51(21): 131 − 133.
|
[5] |
Kumar K, Kumar C S, Masanta M, et al. A review on TIG welding technology variants and its effect on weld geometry[J]. Materials Today: Proceedings, 2022, 50(5): 999 − 1004.
|
[6] |
Sharma G, Tyagi R, Priyanshu, et al. Variants of TIG welding process for improvement of weld penetration depth-A review[J]. Materials Today: Proceedings, 2022, 64(3): 1362 − 1366.
|
[7] |
冯悦峤. 中厚钢板的深熔TIG焊工艺研究及温度场数值模拟[D]. 天津:天津大学,2024.
Feng Yueqiao. Medium plate of research and deep penetrating TIG welding process temperature field numerical simulation [D]. Tianjin:Tianjin University,2024.
|
[8] |
Liu Z M, Fang Y X, Cui S L, et al. Stable keyhole welding process with K-TIG[J]. Journal of Materials Processing Technology, 2016, 238: 65 − 72. doi: 10.1016/j.jmatprotec.2016.07.005
|
[9] |
Su L H , Fei Z Y , Davis B , et al. Digital image correlation study on tensile properties of high strength quenched and tempered steel weld joints prepared by K-TIG and GMAW[J]. Materials Science and Engineering A, 2021, 827(6): 142033.
|
[10] |
Zhang H C, Yu J, Zhang Z X, et al. Arc characteristics and welding process of laser K-TIG hybrid welding [J]. Metals, 2022, 12(7):1139.
|
[11] |
Chudziński M, Krajewski S J , Zmitrowicz P . Application of the keyhole TIG process for high productivity welding of superduplex stainless steel[C]//International Conference Mechatronics. Springer, Cham, 2022, 377: 26 − 44.
|
[12] |
Cui S L, Liu Z M, Fang Y X, et al. Keyhole process in K-TIG welding on 4 mm thick 304 stainless steel[J]. Journal of Materials Processing Technology, 2017, 243: 217 − 228.
|
[13] |
Luo Z, Xie Y, Cui S L. Morphology characterization of molten pool flow behavior during K-TIG welding based on 3D reconstruction techniques[J]. Journal of Tianjin University Science and Technology, 2018, 51(5): 517 − 521. doi: 10.11784/tdxbz201705072
|
[14] |
Feng Y Q, Luo Z, Liu Z M, et al. Keyhole gas tungsten arc welding of AISI 316L stainless steel[J]. Materials & Design, 2015, 85: 24 − 31.
|
[15] |
Huang Y Y , Luo Z , Lei Y C, et al. Dissimilar joining of AISI 304/Q345 steels in keyhole tungsten inert gas welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 4041 − 4049.
|
[16] |
Li X G, Gong B M, Deng C Y, et al. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading[J]. Corrosion Science, 2018, 130: 241 − 251. doi: 10.1016/j.corsci.2017.10.032
|
[17] |
Li X G, Gong B M, Deng C Y, et al. Effect of pre-strain on microstructure and hydrogen embrittlement of K-TIG welded austenitic stainless steel[J]. Corrosion Science, 2019, 149: 1 − 17. doi: 10.1016/j.corsci.2018.12.018
|
[18] |
Fei Z Y, Pan Z X, Cuiuri D, et al. Microstructural characterization and mechanical properties of K-TIG welded SAF2205/AISI316L dissimilar joint[J]. Journal of Manufacturing Processes, 2019, 45: 340 − 355. doi: 10.1016/j.jmapro.2019.07.017
|
[19] |
Fei Z Y, Pan Z X, Cuiuri D, et al. A combination of keyhole GTAW with a trapezoidal interlayer: a new insight into armour steel welding [J]. Materials, 2019, 12(21),3571.
|
[20] |
Fei Z Y, Pan Z X, Cuiuri D, et al. Effect of post-weld heat treatment on microstructure and mechanical properties of deep penetration autogenous TIG-welded dissimilar joint between creep strength enhanced ferritic steel and austenitic stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 3207 − 3229. doi: 10.1007/s00170-020-05605-2
|
[21] |
Cui S W, Pang S W, Pang D Q, et al. Numerical simulation and experimental investigation on 2205 duplex stainless steel K-TIG welded joint [J]. Metals, 2021, 11(8),1323.
|
[22] |
朱加雷, 郭方涛, 李守根, 等. S32101双相不锈钢U形坡口激光填充焊接修复工艺[J]. 焊接学报, 2019, 45(10): 69 − 78.
Zhu Jialei, Guo Fangtao, Li Shougen, et al. Laser filling welding process for U-shaped groove of S32101 duplex stainless steel[J]. Transactions of the China Welding Institution, 2019, 45(10): 69 − 78.
|
[23] |
Cui S W, Yu Y H, Tian F Y, et al. Morphology, microstructure, and mechanical properties of S32101 duplex stainless-steel joints in K-TIG welding[J]. Materials, 2022, 15(15): 5432.
|
[24] |
Cui S W, Pang S W, Pang D Q, et al. The microstructure and pitting corrosion behavior of K-TIG welded joints of the UNS S32101 duplex stainless steel[J]. Materials, 2023, 16(1): 250.
|
[25] |
Han L H, Han T, Chen G X, et al. Influence of heat input on microstructure, hardness and pitting corrosion of weld metal in duplex stainless steel welded by keyhole-TIG[J]. Materials Characterization, 2021, 175: 111052.
|
[26] |
Han L H, Han T, Wang B Y, et al. Effects of keyhole tungsten inert gas welding parameters on 2205 duplex stainless steel welded joints[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1358 − 1372. doi: 10.1007/s11665-021-06269-z
|
[27] |
Zmitrowicz P, Kawiak M, Kochmanski P, et al. Microstructure and mechanical properties of welded joints of 1.4462 duplex steel made by the K-TIG method[J]. Materials, 2021, 14(24): 7868.
|
[28] |
Wang Y P, Qi B J, Cong B Q, et al. Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2018, 34: 179 − 186. doi: 10.1016/j.jmapro.2018.06.006
|
[29] |
Yin Y H, Wang Y P, Gao H, et al. Stimulated pulse keyhole behavior in double-pulsed VPTIG welding of AA2219 high strength aluminum alloy[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3596 − 3601.
|
[30] |
Xu T, Shi Y H, Jiang Z X, et al. Improvement of cryogenic toughness for 9% Ni steel keyhole TIG butt-welded joints with a Ni interlayer[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022, 835: 142661.
|
[31] |
Xuan Y, Yang J, Liu H B, et al. Microstructure and mechanical properties of Invar36 alloy joints using keyhole TIG welding[J]. Science and Technology of Welding and Joining, 2020, 25(8): 712 − 718. doi: 10.1080/13621718.2020.1830545
|
[32] |
Liu H B, Lü S H, Xuan Y, et al. Effects of heat input on weld microstructure and properties in keyhole TIG welding of INVAR 36 alloy[J]. Materials, 2023, 16(10): 3692.
|
[33] |
Ariaseta A, Khan A K, Andersson J, et al. Microstructural study of keyhole TIG welded nickel-based superalloy G27[J]. Materials Characterization, 2023, 204: 113178.
|
[34] |
Ariaseta A, Khan A K, Andersson J, et al. Microstructural analysis of K-TIG-welded new Ni-based superalloy VDM alloy 780[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2024, 55(8): 2952 − 2976.
|
[35] |
Cui S W, Shi Y H, Zhu T, et al. Microstructure, texture, and mechanical properties of Ti-6Al-4V joints by K-TIG welding[J]. Journal of Manufacturing Processes, 2019, 37: 418 − 424. doi: 10.1016/j.jmapro.2018.12.022
|
[36] |
Cui S W, Shi Y H, Zhang C S. Microstructure and mechanical properties of TC4 titanium alloy K-TIG welded joints[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(2): 416 − 425. doi: 10.1016/S1003-6326(21)65506-1
|
[37] |
Cai X Y, Dong B L, Lin S B, et al. Keyhole TIG welding of 3-mm-thick 10MnNiCr steel plates[J]. Welding in the World, 2022, 66(7): 1349 − 1356. doi: 10.1007/s40194-022-01271-y
|
[38] |
Ou P, Cao Z Q, Rong J, et al. Molecular dynamics study on the welding behavior in dissimilar TC4-TA17 titanium alloys[J]. Materials, 2022, 15(16): 5606.
|
[39] |
Ou P, Cao Z Q, Hai M N, et al. Microstructure and mechanical properties of K-TIG welded dissimilar joints between TC4 and TA17 titanium alloys[J]. Materials Characterization, 2023, 196: 112644.
|
[40] |
Jiang S Y, Wang X W, Chen H M, et al. The impact of adscititious longitudinal magnetic field on CO2 welding process[J]. Advanced Materials Research, 2012, 538-541: 1447 − 1450. doi: 10.4028/www.scientific.net/AMR.538-541.1447
|
[41] |
Wang X M, Zhang W , Wang Y. The influence of longitudinal magnetic field on DCEN MAG welding[C]//International Conference on Advanced Design and Manufacturing Engineering, 2012, 217: 1843 − 1846.
|
[42] |
Zhao Z Y, Mi G Y, Zhang X, et al. Influence of additional magnetic field on laser hot wire welding of stainless steel[J]. Laser Technology, 2017, 41(2): 270 − 274.
|
[43] |
Gou W J, Xia G H, Feng Z X. Study on low-frequency magnetic radiation of DC arc welding output cable[C]//International Conference on Advances in Materials, Machinery, Electronics. 2019.
|
[44] |
Chen J, Chen Q, Wu C S. Study of high-speed pulsed gas metal arc welding assisted by external magnetic-field[J]. Science and Technology of Welding and Joining, 2020, 25(7): 564 − 570.
|
[45] |
石永华, 宁强, 崔延鑫. Q345R钢纵向磁场辅助K-TIG焊接接头组织和性能研究[J]. 电焊机, 2020, 50(9): 87 − 91.
Shi Yonghua, Ning Qiang, Cui Yanxin. Study on microstructure and properties of K-TIG welded joint of Q345R steel assisted by longitudinal magnetic field[J]. Electric Welding Machine, 2020, 50(9): 87 − 91.
|
[46] |
赵建强, 石永华, 詹家通, 等. 外加轴向磁场 K-TIG 横焊电弧形态及焊缝成形[J]. 焊接, 2023(4): 1 − 6.
Zhao Jianqiang, Shi Yonghua, Zhan Jiatong, et al. Arc shape and weld formation of K-TIG transverse welding with external axial magnetic field[J]. Welding & Joining, 2023(4): 1 − 6.
|
[47] |
Cui Y X, Kang Y P, Shi Y H, et al. Investigation into the arc profiles and penetration ability of axial magnetic field-enhanced K-TIG welding by means of a specially designed sandwich[J]. Journal of Manufacturing Processes, 2021, 68: 32 − 41. doi: 10.1016/j.jmapro.2021.05.025
|
[48] |
Xu T, Shi Y H, Cui Y X, et al. Effects of magnetic fields in arc welding, laser welding, and resistance spot welding: a review[J]. Advanced Engineering Materials, 2023, 25(5): 2200682. doi: 10.1002/adem.202200682
|
[49] |
Xu T, Shi Y H, Jiang Z X, et al. An extraordinary improvement in cryogenic toughness of K-TIG welded 9Ni steel joint assisted by alternating axial magnetic field[J]. Journal of Materials Research and Technology-JMR& T, 2023, 25: 3071 − 3077.
|
[50] |
Liu Z M, Chen S Y, Yuan X, et al. Magnetic-enhanced keyhole TIG welding process[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(1-4): 275 − 285. doi: 10.1007/s00170-018-2501-0
|
[51] |
Liu S, Liu Z M, Zhao X C, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229 − 237. doi: 10.1016/j.jmapro.2020.02.027.t
|
[52] |
陈泓宇. 集装箱自动化焊接系统的轨迹规划和轨迹校正方法研究[D]. 广州:华南理工大学, 2020.
Chen Hongyu. Research on trajectory planning and trajectory correction method of container automatic welding system [D]. Guangzhou: South China University of Technology, 2020.
|
[53] |
张抱日. 基于高动态成像的深熔K-TIG焊熔池状态检测及其变化机理研究[D]. 广州: 华南理工大学, 2021.
Zhang Baori. State detection and change mechanism of deep penetration K-TIG welding pool based on high dynamic imaging [D]. Guangzhou: South China University of Technology, 2021.
|
[54] |
鹿安理, 史清宇, 赵海燕, 等. 厚板焊接过程温度场、应力场的三维有限元数值模拟[J]. 中国机械工程, 2001, 12(2): 183 − 186. doi: 10.3321/j.issn:1004-132X.2001.02.019
Lu Anli, Shi Qingyu, Zhao Haiyan, et al. Thick plate welding temperature field, stress field, the three-dimensional finite element numerical simulation[J]. China Mechanical Engineering, 2001, 12(2): 183 − 186. doi: 10.3321/j.issn:1004-132X.2001.02.019
|
[55] |
吴言高, 李午申, 邹宏军, 等. 焊接数值模拟技术发展现状[J]. 焊接学报, 2002, 23(3): 89 − 92. doi: 10.3321/j.issn:0253-360X.2002.03.024
Wu Yangao, Li Wushen, Zou Hongjun, et al. Welding current situation of the development of numerical simulation technology[J]. Transactions of the China Welding Institution, 2002, 23(3): 89 − 92. doi: 10.3321/j.issn:0253-360X.2002.03.024
|
[56] |
梁斌, 崔延鑫, 石永华, 等. 深熔K-TIG焊接过程的声信号采集及特征分析[J]. 电焊机, 2018, 48(10): 94 − 97. doi: CNKI:SUN:DHJI.0.2018-10-030
Liang Bin, Cui Yanxin, Shi Yonghua, et al. Deep penetrating K - TIG welding process characteristics of acoustic signal acquisition and analysis[J]. Electric Welding Machine, 2018, 48(10): 94 − 97. doi: CNKI:SUN:DHJI.0.2018-10-030
|
[57] |
Zhu T, Shi Y H, Cui S W, et al. Recognition of weld penetration during K-TIG welding based on acoustic and visual sensing[J]. Sensing and Imaging, 2019, 20(1): 1 − 21. doi: 10.1007/s11220-018-0224-9
|
[58] |
Cui Y X, Shi Y H, Zhu T, et al. Welding penetration recognition based on arc sound and electrical signals in K-TIG welding[J]. Measurement, 2020, 163: 107966.
|
[59] |
Cui Y X, Shi Y H, Ning Q, et al. Investigation into keyhole-weld pool dynamic behaviors based on HDR vision sensing of real-time K-TIG welding process through a steel/glass sandwich[J]. Advances in Manufacturing, 2021, 9(1): 136 − 144. doi: 10.1007/s40436-020-00335-w
|
[60] |
Li B H, Shi Y H, Wang Z S. Penetration identification of magnetic controlled keyhole tungsten inert gas horizontal welding based on OCR-SVM[J]. Welding in the World, 2024, 68(9): 2281 − 2292. doi: 10.1007/s40194-024-01752-2
|
[61] |
Shi Y H , Wang Z H, Chen X Y, et al. Real-time K-TIG welding penetration prediction on embedded system using a segmentation-LSTM model[J]. Advances in Manufacturing, 2023, 11(3): 444 − 461.
|
[62] |
Bai Huizhong, Ni Na, Wu Yingna, et al. Real-time penetration recognition based on voltage signal in K-TIG welding[J]. Applied Sciences-Basel, 2023, 13(13): 7412.
|
[63] |
Yang D Y, Dai P H, Cui S W, et al. Real-time recognition of molten pools based on improved DeepLabV3 + in keyhole tungsten inert gas welding applications[J]. Electronics, 2024, 13(2): 283.
|
[64] |
Zhan B R, Guo S Y, Shi Y H. Robotic deep penetration K-TIG welding system based on weld penetration detection[J]. Journal of Mechanical Engineering, 2019, 55(17): 14 − 21.
|
[65] |
刘炜聪. K-TIG焊接窄间隙焊缝视觉跟踪系统研究[D]. 广州: 华南理工大学, 2019.
Liu Weicong. Research on K-TIG welding narrow gap weld visual tracking system [D]. Guangzhou: South China University of Technology, 2019.
|
[66] |
Chen Y K, Shi Y H, Cui Y X, et al. Narrow gap deviation detection in keyhole TIG welding using image processing method based on Mask-RCNN model[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112: 2015 − 2025.
|
[67] |
Wang Z S, Shi Y H, Hong X B, et al. Weld pool and keyhole geometric feature extraction in K-TIG welding with a gradual gap based on an improved HDR algorithm[J]. Journal of Manufacturing Processes, 2022, 73: 409 − 427. doi: 10.1016/j.jmapro.2021.11.004
|
[68] |
Lin Z L, Shi Y H, Wang Z S, et al. Intelligent seam tracking of an ultranarrow gap during K-TIG welding: a hybrid CNN and adaptive ROI operation algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1 − 14.
|
[69] |
Chu J, Wang X, Ma Y J, et al. Numerical simulation of melt pool formation in laser transmission joining PET with microtextured surface pretreated SUS304 stainless steel[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124560.
|
[70] |
Cui C Y, Chen L, Yang J, et al. Numerical simulation and testing of laser-MIG hybrid-welding angle-structure sheets[J]. Applied Optics, 2023, 62(23): 6180 − 6193. doi: 10.1364/AO.494547
|
[71] |
Zhang Y J, Li Y H, Zhang Y L, et al. Numerical analysis of the behavior of molten pool and the suppression mechanism of undercut defect in TIG-MIG hybrid welding[J]. International Journal of Heat and Mass Transfer, 2024, 218: 124757. doi: 10.1016/j.ijheatmasstransfer.2023.124757
|
[72] |
Zhang R H, Li H X, Li M, et al. Numerical analysis on keyhole gas tungsten arc welding[J]. Electric Welding Machine, 2012, 42(12): 7 − 11.
|
[73] |
Song B Y, Dong B L, Cai X Y, et al. Numerical simulation of arc characteristics in K-TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(7): 3821 − 3837.
|
[74] |
Chen S Y, Liu Z M, Zhao X C, et al. Cathode-focused high-current arc: Heat source development with stable keyhole in stationary welding[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118475. doi: 10.1016/j.ijheatmasstransfer.2019.118475
|
[75] |
Cui S W, Pang S W, Pang D Q, et al. Influence of welding speeds on the morphology, mechanical properties, and microstructure of 2205 DSS welded joint by K-TIG welding[J]. Materials, 2021, 14(12): 3426. doi: 10.3390/ma14123426
|
[76] |
Cui S W, Dai P H, Ma R, et al. Mechanism study of flow characteristics of molten pool and keyhole dynamic behavior of K-TIG welding[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(3): 1195 − 1206.
|
[77] |
庞舒文. 2205双相不锈钢K-TIG焊数值模拟及接头性能研究[D]. 柳州: 广西科技大学, 2023.
Pang Shuwen. Numerical simulation and joints performance study of K-TIG welding of 2205 duplex stainless steel[D].Liuzhou: Guangxi University of Science and Technology, 2023.
|
[1] | BAI Zijian, ZHANG Zhifen, WANG Jie, ZHANG Shuai, SU Yu, WEN Guangrui, CHEN Xuefeng. Dilution rate monitoring of DED based on a spectral physical feature perception network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 95-100. DOI: 10.12073/j.hjxb.20240701002 |
[2] | LONG Haiwei, ZHANG Jiaying, LIU Rui, SUN Yibo, WEI Xiao, YANG Xinhua. Online monitoring of dissimilar material FSW based on SSTFT and KSVD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 77-84. DOI: 10.12073/j.hjxb.20240716002 |
[3] | BAI Zijian, LI Zhiwen, ZHANG Zhifen, QIN Rui, ZHANG Shuai, XU Yaowen, WEN Guangrui. On-line monitoring of TIG welding quality of nuclear power plug tube based on arc spectrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 8-19. DOI: 10.12073/j.hjxb.20230610002 |
[4] | XU Donghui, MENG Fanpeng, SUN Peng, ZHENG Xuchen, CHENG Yongchao, MA Zhi, CHEN Shujun. Online monitoring of GMAW welding defect based on deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 114-119. DOI: 10.12073/j.hjxb.20230117002 |
[5] | LIU Qiang, ZHAO Libin, CHI Dazhao. Ultrasonic Lamb wave detection of defects in thin-walled cross laser welding structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 40-43. DOI: 10.12073/j.hjxb.20210123001 |
[6] | GAO Liwen, XUE Jiaxiang, CHEN Hui, WANG Ruichao, LIN Fang. Adaptive online detection on dynamic characteristics of arc welding power supply based on complicated dimensionality reduction of correlation and time consumption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 17-20. |
[7] | ZHAO Xin, QIAN Chang-ming, CHEN Guan-long, ZHANG Yan-song. Ultrasonic fast identification for faulty welded joint defects of auto-body spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 17-20. |
[8] | LI Di, SONG Zhu-mei, YE Feng. On-line monitoring of gas metal arc welding defects based on independent component analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 44-48. |
[9] | ZENG An, LI Di, PAN Dan, YE Feng. ON line monitoring platform of GMAW based on MSPC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 5-8. |
[10] | ZHOU Zheng-gan, TENG Sheng-hua, JIANG Wei, LI He-ping. Research on Defect Detection and Evaluation in WeldS with X-Rays[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 85-88. |
1. |
胡岭,余丁坤,卜永周,罗庆澄,薛松柏. Sn和Ce元素复合添加对BAg5CuZn钎料钎缝组织与性能影响. 焊接学报. 2024(04): 101-108+135 .
![]() | |
2. |
汪小钰,王轶,操齐高,孟晗琪,郑晶,苏瑾,胡建华,张志霄. 熔炼气雾化制备钴基粉末钎料在GH4169合金钎焊中应用. 电焊机. 2024(05): 46-51 .
![]() | |
3. |
李淳,陈雷,司晓庆,亓钧雷,曹健. 陶瓷-金属接头残余应力调控研究综述. 机械工程学报. 2024(22): 21-39 .
![]() |