Advanced Search
WU Rufei, LI Qi, GAO Anyang, ZHANG Shuo, XIAN Cheng, SI Tingzhi. Significantly improved oxidation and thermal shock resistances of 414N hard-faced layer by microalloying and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 133-144. DOI: 10.12073/j.hjxb.20240316001
Citation: WU Rufei, LI Qi, GAO Anyang, ZHANG Shuo, XIAN Cheng, SI Tingzhi. Significantly improved oxidation and thermal shock resistances of 414N hard-faced layer by microalloying and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 133-144. DOI: 10.12073/j.hjxb.20240316001

Significantly improved oxidation and thermal shock resistances of 414N hard-faced layer by microalloying and its mechanism

More Information
  • Received Date: March 15, 2024
  • Available Online: October 14, 2024
  • The microalloying 414N (MA414N) welding wire via Ti/Nb/V and Ce was used to weld the hard-faced layer of continuous casting roller, and the oxidation and thermal shock resistance of the MA414N hard-faced layer were compared with 414N hard-faced layer without microalloying. Transmission electron microscope (TEM), scanning electron microscope (SEM)/energy disperse X-ray (EDX), and X-ray diffraction (XRD) techniques were used to investigate the effect of microalloying on oxidation and thermal shock resistance of the hard-faced layer and its mechanism. The results show that the oxidation and thermal shock resistance of MA414N is significantly improved, compared to that of 414N. After oxidation for 360 h at 650 °C, the oxidation weight gain and oxidation rate constant of MA414N are reduced by 16% and 31%, respectively, compared to 414N; the surface damage factor of MA414N after 300 thermal shock cycles is significantly reduced by 53% compared to 414N. The initiation and propagation of thermal shock-induced cracks are affected by thermal stress, microstructure stress, and oxidation. The significant improvement of thermal shock resistance of MA414N is mainly due to the strengthening of the second phase precipitation, less microstructure transformation between M and A, and a relatively stable oxide film structure.

  • [1]
    GUO P, MA S, JIAO M, et al. Effect of chromium on microstructure and oxidation wear behavior of high-boron high-speed steel at elevated temperatures[J]. Materials, 2022, 15(2): 557 − 572. doi: 10.3390/ma15020557
    [2]
    程建国, 潘龙博, 张硕, 等. 42CrMo 连铸辊堆焊硬面层的高温磨损行为[J]. 材料保护, 2021, 54(7): 37 − 43.

    CHENG Jianguo, PAN Longbo, ZHANG Shuo, et al. High-temperature wear behaviors of the hard-facing metal layer of 42CrMo continuous casting roller[J]. Materials Protection, 2021, 54(7): 37 − 43.
    [3]
    ABD RASHID M W, GAKIM M, ROSIL Z M, et al. Formation of Cr23C6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion[J]. International Journal of Electrochemical Science, 2012, 7(10): 9465 − 9477. doi: 10.1016/S1452-3981(23)16211-0
    [4]
    LI X, WU Y, BI H. Study on the corrosion properties of 0Cr11 ferritic stainless steel for automotive exhaust systems[J]. Baosteel Technical Research, 2010, 4(1): 53 − 55.
    [5]
    OH D, HAN K, HONG S, et al. Effects of alloying elements on the thermal fatigue properties of the 15% Cr ferritic stainless steel weld HAZ[J]. Materials Science & Engineering A, 2012, 555: 44 − 51. doi: 10.1016/j.msea.2012.06.031
    [6]
    YU X F, ZHENG D Y, YANG X F, et al. Effect of carbide precipitation behavior at high temperatures on microstructure and mechanical properties of M50 steel[J]. Journal of Materials Research and Technology, 2022, 18: 1155 − 1165. doi: 10.1016/j.jmrt.2022.03.021
    [7]
    曾邦兴, 胡永俊, 邹晓东, 等. 保护气体对(Nb, Ti)C增强铁基复合堆焊层组织与性能的影响[J]. 焊接, 2022, 6: 33 − 41.

    ZENG Bangxing, HU Yongjun, ZOU Xiaodong, et al. Influence of shielding gas on microstructure and properties of (Nb, Ti)C reinforced Fe-based composite surfacing layer[J]. Welding & Joining, 2022, 6: 33 − 41.
    [8]
    ABE F, MURATA M, MIYAZAKI H. Effect of TiC and NbC carbides on creep life of stainless steels[J]. Materials at High Temperatures, 2019, 36(1): 35 − 47. doi: 10.1080/09603409.2018.1452365
    [9]
    解传滨. Ni-Cr-Al-Sc系合金高温抗氧化性能研究[D]. 南宁: 广西大学, 2022.

    XIE Chuanbin. Effect of high temperature corrosion resistance of Ni-Cr-Al-Sc superalloy[D]. Nanning: Guangxi University, 2022.
    [10]
    WANG S, ZHENG Z, ZHENG K, et al. High temperature oxidation behavior of heat resistant steel with rare earth element Ce[J]. Materials Research Express, 2020, 7(1): 1 − 11.
    [11]
    高安阳, 蔡忠贤, 王飞, 等. 一种“素化”连铸辊辊坯材料体系及其制备方法: 中国, 202211663335.2[P]. 2023.

    GAN Anyang, CAI Zhongxian, WANG Fei, et al. A "plain" continuous casting roll billet material system and its preparation method: China, 202211663335.2[P]. 2023.
    [12]
    全国钢标准化技术委员会. 连铸辊焊接复合制造技术规范: YB/T 4326-2013[S]. 北京: 冶金工业出版社, 2013.

    Technical Committee on Steel of Standardization Committee of China. Welding manufacture technical criterion for continuous casting roll: YB/T 4326-2013[S]Beijing: Metallurgical Industry Press. 2013.
    [13]
    全国钢标准化技术委员会. 钢的抗氧化性能测定方法: GB/T 13303-1991 [S]. 北京: 中国标准出版社, 1991.

    Technical Committee on Steel of Standardization Committee of China. Steels-determination method of oxidation resistance: GB/T 13303-1991[S]. Beijing: Standards Press of China. 1991.
    [14]
    IZUMI F, IKEDA T. A rietveld-analysis programm RIETAN-98 and its applications to zeolites[J]. Materials Science Forum, 2000, 321: 198-205.
    [15]
    LI Z M, LI X N, YUAN J H, et al. Strong elemental interaction enhances the thermal stability of coherent precipitation strengthened Cu-Ni-Al alloys[J]. Materials Science & Engineering A, 2021, 827: 1 − 16.
    [16]
    段志英, 张芊芊, 方舟, 等. 添加 Yb 对 Al-Zn-Mg-Cu-Zr-Cr 合金组织性能的影响[J]. 粉末冶金材料科学与工程, 2023, 28(5): 413 − 426.

    DUAN Zhiying, ZHANG Qianqian, FANG Zhou, et al. Effects of Yb addition on microstructure and properties of Al-Zn-Mg-Cu-Zr-Cr alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(5): 413 − 426.
    [17]
    李宁, 马赛, 秦春, 等. 水蒸气对GH3600合金高温氧化行为的影响[J]. 热加工工艺, 2023, 52(8): 113 − 116.

    LI Ning, MA Sai, QIN Chun, et al. Effects of water vapor on high temperature oxidation behavior of GH3600 alloy[J]. Hot Working Technology, 2023, 52(8): 113 − 116.
    [18]
    ZHENG Z, WANG S, LONG J, et al. Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel[J]. Corrosion Science, 2020, 164: 1 − 13.
    [19]
    ZHAO Y, LIU H L, WEI L L, et al. An overview on the novel heat-resistant ferritic stainless steels[J]. Tungsten, 2023, 50(4): 467 − 480.
    [20]
    杜晓洁, 丁骁, 马新元, 等. 耐高温氧化Fe-Cr-Ni中熵合金氧化层的微结构与力学性能分布[J]. 表面技术, 2022, 51(8): 363 − 374.

    DU Xiaojie, DING Xiao, MA Xinyuan, et al. Microstructure and micro-mechanical distribution of oxide layer formed on Fe-Cr-Ni medium entropy alloy with excellent high-temperature oxidation resistance[J]. Surface Technology, 2022, 51(8): 363 − 374.
    [21]
    LIU T, ZHENG K, WANG J, et al. Effect of Ce on oxidation behaviour and microstructure evolution of a nickel-saving austenitic heat-resistant cast steel[J]. Corrosion Science, 2020, 166: 1 − 14.
    [22]
    DU X, MA X, DING X, et al. Enhanced high-temperature oxidation resistance of low-cost Fe‐Cr‐Ni medium entropy alloy by Ce-adulterated[J]. Journal of Materials Research and Technology, 2022, 16: 1466 − 1477. doi: 10.1016/j.jmrt.2021.12.087
    [23]
    DESHMUKH P R, SOHN Y, SHIN W G. Flexible solid-state symmetric supercapacitor based on (Fe, Cr)2O3 oxide layer developed on the stainless steel mesh[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 300 − 310.
    [24]
    REN Y, LI N, FENG J, et al. Adsorption of Pb (II) and Cu (II) from aqueous solution on magnetic porous ferrospinel MnFe2O4[J]. Journal of Colloid and Interface Science, 2012, 367(1): 415 − 421. doi: 10.1016/j.jcis.2011.10.022
    [25]
    陈珮琳, 赵艳君, 李平珍, 等. 316L 不锈钢高温氧化及高温拉伸性能[J]. 材料热处理学报, 2023, 43(11): 103 − 110.

    CHEN Pinglin, ZHAO Yanjun, LI Pingzhen, et al. High temperature oxidation and high temperature tensile properties of 316L stainless stee[J]. Transactions of Materials and Heat Treatment, 2023, 43(11): 103 − 110.
    [26]
    姜来合格, 邓玉春, 赵娇玉, 等. Q345E钢激光-电弧复合焊T形接头疲劳性能[J]. 焊接学报, 2024, 45(5): 1 − 7. doi: 10.12073/j.hjxb.20230613001

    JANG Laihege, DENG Yuchun, ZHAO Jiaoyu, et al. Fatigue properties of laser-arc hybrid welded Q345E steel T-joints[J]. Transactions of the China Welding Institution, 2024, 45(5): 1 − 7. doi: 10.12073/j.hjxb.20230613001
    [27]
    JIN Y H, CHEN Y S, MA Y M, et al. Fatigue crack propagation of 7050 aluminum alloy FSW joints after surface peening[J]. China Welding, 2023, 32(1): 18-26.
    [28]
    WU X, XU L. Computer aided evaluation of thermal fatigue cracks on hot-work tool steel[C]//The 6th International Tooling Conference, September 10-13, 2002, Karlstad University, Karlstad, Sweden. Switzerland: Trans Tech Publications Ltd. 2002: 657-666.
    [29]
    ZHAN J, LI M, HUANG J, et al. Thermal fatigue characteristics of type 309 austenitic stainless steel for automotive manifolds[J]. Metals, 2019, 9(2): 129 − 137. doi: 10.3390/met9020129
    [30]
    ZHAN J M, BI H Y, LI M C. Thermal fatigue behavior of 441 ferritic stainless steel in air and synthetic automotive exhaust gas[J]. Science China Technological Sciences, 2022, 65(1): 169 − 178. doi: 10.1007/s11431-021-1865-7
    [31]
    CHOI J, CHOI J, LEE K, et al. Fatigue life prediction methodology of hot work tool steel dies for high-pressure die casting based on thermal stress analysis[J]. Metals, 2022, 12(10): 1744 − 1761. doi: 10.3390/met12101744
    [32]
    JIANG Q C, ZHAO X M, QIU F, et al. The relationship between oxidation and thermal fatigue of martensitic hot-work die steels[J]. Acta Metallurgica Sinica (English Letters), 2018, 31: 692 − 698. doi: 10.1007/s40195-017-0699-8
    [33]
    孙淑华, 傅万堂, 王振华, 等. 一种微合金化马氏体不锈钢的连续冷却转变研究[J]. 燕山大学学报, 2011, 35(2): 102 − 104. doi: 10.3969/j.issn.1007-791X.2011.02.002

    SUN Shuhua, Fu Wantang, WANG Zhenhua, et al. Study on continuous cooling transformation of a micro-alloyed martensitic stainless steel[J]. Journal of Yanshan University, 2011, 35(2): 102 − 104. doi: 10.3969/j.issn.1007-791X.2011.02.002
    [34]
    王振华, 孙淑华, 张亚才, 等. 一种微合金化 0Cr13Ni4Mo 不锈钢的相图及临界转变温度研究[J]. 大型铸锻件, 2011(2): 1 − 3. doi: 10.3969/j.issn.1004-5635.2011.02.001

    WANG Zhenhua, SUN Shuhua, ZHANG Yacai, et al. Study on phase diagram and critical transformation temperature of a micro-alloyed 0Cr13Ni4Mo stainless steel[J]. Heavy Casting and Forging, 2011(2): 1 − 3. doi: 10.3969/j.issn.1004-5635.2011.02.001
    [35]
    刘同华, 强文江, 王伟. 不锈钢中合金元素的作用及其研究现状[J]. 热加工工艺, 2018, 47(4): 17 − 21.

    LIU Tonghua, QIANG Wenjiang, WANG Wei. Function and research status of alloying elements in stainless steel[J]. Hot Working Technology, 2018, 47(4): 17 − 21.
    [36]
    王鑫. 钛对铌-钛微合金化700L大梁钢组织和性能的影响[J]. 包钢科技, 2023, 49(2): 55 − 59. doi: 10.3969/j.issn.1009-5438.2023.02.013

    WANG Xin. Effects of Ti on microstructure and properties of Nb-Ti microalloyed 700L beam steel[J]. Science & Technology of Baotou Steel, 2023, 49(2): 55 − 59. doi: 10.3969/j.issn.1009-5438.2023.02.013
    [37]
    HASHEMI S G, EGHBALI B. Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25: 339 − 349.
    [38]
    KARMAKARA A, MUKHERJEE S, KUNDU S, et al. Effect of composition and isothermal holding temperature on the precipitation hardening in Vanadium-microalloyed steels[J]. Materials Characterization, 2017, 132(10): 31 − 40.
    [39]
    MEHRABI A, MCDERMID J R, WANG X, et al. Austenite nucleation and growth as a function of starting microstructure for a Fe-0.15C-5.56Mn-1.1Si-1.89Al medium-Mn steel[J]. Steel Research International, 2023, 94: 1 − 10.
  • Related Articles

    [1]LI Chengxiang, XU Chennan, ZHOU Yan, CHEN Dan, MI Yan. Atomic diffusion behavior in the interface formation of copper-aluminum electromagnetic pulse welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 22-31. DOI: 10.12073/j.hjxb.20230215002
    [2]WU Peng, WANG Yiping, YANG Dongsheng, FENG Jiayun, TIAN Yanhong. Molecular dynamics simulation study of sintering mechanism and thermal conductivity of nano-Ag particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 1-7. DOI: 10.12073/j.hjxb.20230613002
    [3]YU Zhangqin, HU Jianhua, YANG Zheng, HUANG Shangyu. Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 120-128. DOI: 10.12073/j.hjxb.20211221001
    [4]YUAN Xiaojing, GUO Xiaohui, GUAN Ning, WANG Xuping, ZHAN Jun, SUN Lei. Molecular dynamics simulation of NiCr alloy fabricated by micro-plasma additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 25-32. DOI: 10.12073/j.hjxb.20210131001
    [5]WANG Xingxing, HE Peng, LI Shuai, ZHANG Shuye, LUO Jingyi, SATO Yutaka. Application of high-throughput methods in the field of brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 1-7. DOI: 10.12073/j.hjxb.20200809001
    [6]FENG Yuqi, LUO Yi, SUN Yibo, WANG Xiaodong, ZHANG Miaomiao. Molecular dynamic simulation of interface diffusion behavior during melting joining of thermoplastic polymer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 41-44.
    [7]ZENG Fanlin, SUN Yi, ZHOU Yu, LI Qingkun. Molecular dynamics simulations of interface interactions of POSS in lead free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 17-20,24.
    [8]CHENG Hongtao, YANG Jianguo, LIU Xuesong, FANG Hongyuan. Molecular dynamics simulation of diffusion behavior between the interface of Cu/Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 49-52.
    [9]LI Hong, LI Zhuoxin. Dynamic simulation of isothermal solidification in steel Cu steel system rolling-diffusion bonding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 61-64.
    [10]ZOU Jia-sheng, CHU Ya-jie, ZHAI Jian-guang, CHEN Zheng. Dynamic study in partial transient liquid phase bonding of Si3N4/Ti/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 43-46,51.
  • Cited by

    Periodical cited type(1)

    1. 任二花,李晓延,张虎,韩旭. 空位对Cu/Sn焊点中Cu_3Sn层元素扩散的影响. 电子元件与材料. 2022(04): 381-386 .

    Other cited types(5)

Catalog

    Article views (86) PDF downloads (31) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return