Advanced Search
WANG Yong, JI Qifeng, REN Hongyi, ZHU Guodong. Performance optimization and fixation methods for large-scale ultrasonic welding heads[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 116-124. DOI: 10.12073/j.hjxb.20240120001
Citation: WANG Yong, JI Qifeng, REN Hongyi, ZHU Guodong. Performance optimization and fixation methods for large-scale ultrasonic welding heads[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 116-124. DOI: 10.12073/j.hjxb.20240120001

Performance optimization and fixation methods for large-scale ultrasonic welding heads

More Information
  • Received Date: January 19, 2024
  • Available Online: March 17, 2025
  • Experimental analysis of the performance optimization and fixation methods for large-scale ultrasonic welding heads was conducted. Parametric processing of the long slot dimensions of the welding head was performed, generating 360 sets of randomized sample data and corresponding dynamic performance parameters. An 18-12-8 structured back propagation (BP) neural network model was constructed to establish a mapping relationship between long slot dimensions and dynamic performance, achieving a model prediction error within 10%, maximum longitudinal amplitude error ε1 ≤2.58%, and maximum stress error ε4≤7.02%. Subsequently, the multi-objective particle swarm optimization (MOPSO) algorithm was integrated to maximize longitudinal amplitude γ1, transverse amplitude γ2, vertical amplitude γ3, and stress σmax, resulting in a Pareto optimal solution set. The optimized welding head exhibited a 30.43% increase in the maximum longitudinal amplitude from 23.0 μm to 30.154 μm, with stress distribution meeting the material requirements of the welding head. Based on the analysis, a novel fixation method was designed by installing support tools at the welding head’s side with low vibrations. The results show that the stiffness of the optimized fixation scheme is improved, with remarkable vibration isolation effects, and the maximum longitudinal amplitude difference of the welding head is only 0.467 μm. The study validates the effectiveness of the MOPSO-BP hybrid optimization strategy, providing technical support for enhancing the performance of industrial ultrasonic welding systems.

  • [1]
    李欢, 李俊, 李哲, 等. 超声焊接纯铜过程塑性变形与微观组织演变[J/OL]. 焊接学报, 1 − 8. http: //kns. cnki. net/kcms/detail/23. 1178. TG. 20250114. 1119. 004. html.

    LI Huan, LI Jun, LI Zhe, et al. Plastic deformation and microstructures evolution in pure copper ultrasonic welding[J/OL]. Transactions of the China Welding Institution, 1 − 8. http: //kns. cnki. net/kcms/detail/23. 1178. TG. 20250114. 1119. 004. html.
    [2]
    ZHANG C X, LI H, LIU Q X, et al. Ultrasonic welding of aluminum to steel: a review[J]. Metals, 2022, 13(1): 29. doi: 10.3390/met13010029
    [3]
    BHUDOLIA S K, GOHEL G, LEONG K F, et al. Advances in ultrasonic welding of thermoplastic composites: a review[J]. Materials, 2020, 13(6): 1284. doi: 10.3390/ma13061284
    [4]
    成先明, 杨可, 邵壮, 等. 超声波焊接能量对铜/铝导线接头结合性能的影响[J]. 焊接学报, 2024, 45(4): 65 − 70. doi: 10.12073/j.hjxb.20230504001

    CHENG Xianming, YANG Ke, SHAO Zhuang, et al. Effect of ultrasonic welding energy on the bonding properties of Cu-Al cables[J]. Transactions of the China Welding Institution, 2024, 45(4): 65 − 70. doi: 10.12073/j.hjxb.20230504001
    [5]
    LI H J, CHEN C, YI R X, et al. Ultrasonic welding of fiber-reinforced thermoplastic composites: a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1): 29 − 57.
    [6]
    LIU Z G, LI Y, LIU Z W, et al. Ultrasonic welding of metal to fiber-reinforced thermoplastic composites: a review[J]. Journal of Manufacturing Processes, 2023, 85: 702 − 712. doi: 10.1016/j.jmapro.2022.12.001
    [7]
    KALYAN K R, OMKUMAR M. Investigation of ultrasonic welding of carbon fiber reinforced thermoplastic to an aluminum alloy using a interfacial coating[J]. Materials and Manufacturing Processes, 2021, 36(11): 1323 − 1331. doi: 10.1080/10426914.2021.1905839
    [8]
    DOBROTA D, LAZAR S V. Ultrasonic welding of PBT-GF30(70% polybutylene terephthalate + 30% fiber glass) and expanded Polytetrafluoroethylene (e-PTFE)[J]. Polymers, 2021, 13(2): 298. doi: 10.3390/polym13020298
    [9]
    KOTHURU V V, SISTLA V S, MOHAMMED I H, et al. Design and numerical analysis of rectangular sonotrode for ultrasonic welding[J]. Trends in Sciences, 2022, 19(11): 4215 − 4215. doi: 10.48048/tis.2022.4215
    [10]
    CHEN K, ZHANG Y. Mechanical analysis of ultrasonic welding considering knurl pattern of sonotrode tip[J]. Materials & Design, 2015, 87: 393 − 404.
    [11]
    TORRES-MORENO J L, CRUZ N C, ALVAREZ J D, et al. An open-source tool for path synthesis of four-bar mechanisms[J]. Mechanism and Machine Theory, 2022, 169: 104604. doi: 10.1016/j.mechmachtheory.2021.104604
    [12]
    SUN L, HU S J, FREIHEIT T. Feature-based quality classification for ultrasonic welding of carbon fiber reinforced polymer through Bayesian regularized neural network[J]. Journal of Manufacturing Systems, 2021, 58: 335 − 347. doi: 10.1016/j.jmsy.2020.12.016
    [13]
    PEREIRA J L, OLIVER G A, FRANCISCO M B, et al. A review of multi-objective optimization: methods and algorithms in mechanical engineering problems[J]. Archives of Computational Methods in Engineering, 2022, 29(4): 2285 − 2308. doi: 10.1007/s11831-021-09663-x
    [14]
    HUANG Q, ZHAO B, QIU Y T, et al. MOPSO process parameter optimization in ultrasonic vibration-assisted grinding of hardened steel[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128: 903 − 914. doi: 10.1007/s00170-023-11949-2
    [15]
    ELSHEIKH A H, ELAZIZ M A, VENDAN A. Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer[J]. Welding in the World, 2022(66): 27 − 44.
    [16]
    KUO C C, TSAI Q Z, LI D Y, et al. Optimization of ultrasonic welding process parameters to enhance weld strength of 3C power cases using a design of experiments approach[J]. Polymers, 2022, 14(12): 2388. doi: 10.3390/polym14122388
    [17]
    DHILIP A, NAMPOOTHIRI J. Investigating the effects of ultrasonic assistance on TIG welding of AA7075 alloys: a machine learning-based optimization study using RSM-PSO[J]. Physica Scripta, 2024, 100(1): 016002.
    [18]
    LIANG H W, QI L Z, LIU X. Modeling and optimization of robot welding process parameters based on improved SVM-PSO[J]. The International Journal of Advanced Manufacturing Technology, 2024, 133(5): 2595 − 2605.
  • Related Articles

    [1]LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003
    [2]ZHU Hai, GUO Yanling, ZHANG Shanshan. Finite element analysis of thermal-mechanical coupled model for friction welded joint of 35Cr2Ni4MoA high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 81-84.
    [3]HONG Bo, LI Lin, HONG Yuxiang, YANG Jiawang. Finite element analysis of magnetic control arc welding seam tracking sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 5-8.
    [4]HU Qingxian, WANG Yanhui, YAO Qingjun, WANG Shunyao. Finite element analysis of temperature field during keyholeplasma arc welding using SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 66-69.
    [5]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [6]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [7]ZHANG Mingxian, WU Chuansong, LI Kehai, ZHANG Yuming. FEA based prediction of weld dimension in new DE-GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 33-37.
    [8]WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53.
    [9]WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68.
    [10]Chen Chu, Wang Jianhua, Yang Hongqing. ANALYSIS AND CALCULATION OF NON-LINEAR WELDING HEAT CONDUCTION BY FINITE ELEMENT METHOD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1983, (3): 139-148.

Catalog

    Article views (32) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return