Citation: | QIN Jian, YANG Haozhe, PEI Yinyin, YANG Jiao, LONG Weimin, LIAO Zhiqian, LEI Zhen. Effect of Zr content in in-situ synthesized brazing alloy on the microstructure and properties of brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 27-35. DOI: 10.12073/j.hjxb.20231127003 |
The brazed joints obtained by welding titanium alloys with titanium-based brazing filler metal have the advantages of high strength, good corrosion resistance and good heat resistance. Therefore, titanium alloy components which brazed with titanium-based brazing alloys are commonly used in extreme service environments such as heavy loads and strong corrosion. In this paper, the deterioration of matrix microstructure and properties, the embrittlement of welding in titanium alloy brazing are studied. The vacuum brazing mechanism and process of pure titanium TA2 with Zr, Cu and Ni pure metal foils as in-situ synthesized brazing filler metal were designed. It was found that the typical interface structure of the brazed joint obtained by in-situ synthesis brazing alloy was base metal/diffusion layer (Ti, Zr)2(Cu, Ni) + α-Ti eutectoid structure / brazing seam center (eutectic) compound layer / diffusion layer (Ti, Zr)2(Cu, Ni) + α-Ti eutectoid structure / base metal. The microhardness gradually decreases from the compound layer in the center of the brazing seam to the base metal on both sides. The results show that with the increase of Zr content, the thickness of diffusion layer and the total width of brazing seam decrease first and then increase. The thickness of the compound layer in the center of the brazing seam increases first and then decreases. The thickness of the compound layer in the center of the brazing seam of Zr26CuNi brazing filler metal is the smallest, about 10 μm. The shear strength of the brazed joint decreases first and then increases with the increase of Zr content in the filler metal. Among them, the shear strength of Zr26CuNi brazing joint is the largest, with an average value of 207 MPa. The fracture of the joint is mainly brittle fracture. Therefore, the brazing joint performance of Zr26CuNi brazing alloy is excellent, and the composition optimization of in-situ synthesized brazing alloy is realized.
[1] |
李治, 陈文炯, 张天恩. 翅片打孔对板翅式换热器传热性能和流场影响[J]. 大连理工大学学报, 2021, 61(1): 60 − 66. doi: 10.7511/dllgxb202101009
Li Zhi, Chen Wenjiong, Zhang Tianen. Influence of fin perforation on heat transfer performance and flow field of plate-fin heat exchangers[J]. Journal of Dalian University of Technology, 2021, 61(1): 60 − 66. doi: 10.7511/dllgxb202101009
|
[2] |
李悦, 王建峰, 马龙飞, 等. 保温时间对钛合金板翅式换热器真空钎焊过程温度场及残余应力的影响[J]. 焊接学报, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001
Li Yue, Wang Jianfeng, Ma Longfei, et al. Effect of holding time on temperature field and residual stress in the vacuum brazing process of titanium alloy plate-fin heat exchangers[J]. Transactions of the China Welding Institution, 2024, 45(2): 33 − 40. doi: 10.12073/j.hjxb.20230303001
|
[3] |
龙伟民, 赵月, 钟素娟, 等. 铜/铝异质钎焊连接界面金属间化合物的研究进展(英文)[J]. 稀有金属材料与工程, 2021, 50(1): 7 − 13.
Long Weimin, Zhao Yue, Zhong Sujuan, et al. Progress of intermetallic compounds at the interface of copper/aluminum heterogeneous brazed joints[J]. Rare Metal Materials and Engineering, 2021, 50(1): 7 − 13.
|
[4] |
龙伟民, 李胜男, 都东, 等. 钎焊材料形态演变及发展趋势(英文)[J]. 稀有金属材料与工程, 2019, 48(12): 3781 − 3790.
Long Weimin, Li Shengnan, Du Dong, et al. Morphological evolution and development trend of brazing materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781 − 3790.
|
[5] |
Chen C R, Liu C, Wang Q T, et al. Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components[J]. China Welding, 2023, 32(3): 51 − 66.
|
[6] |
Zhang L, Long W, Du D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125: 109032. doi: 10.1016/j.diamond.2022.109032
|
[7] |
张启运, 庄鸿寿. 钎焊手册(第3版)[M]. 机械工业出版社, 2018.
Zhang Qiyun, Zhuang Hongshou. Handbook of brazing and soldering (the third edition)[M]. China Machine Press, 2018.
|
[8] |
Long W. Highly reliable joints between dissimilar materials[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2327 − 2328. doi: 10.1007/s42243-024-01358-4
|
[9] |
Xia Y, Dong H, Zhang R, et al. Interfacial microstructure and shear strength of Ti6Al4V alloy/316 L stainless steel joint brazed with Ti33. 3Zr16. 7Cu50− xNix amorphous filler metals[J]. Materials & Design, 2020, 187: 108380.
|
[10] |
Xia Y, Ma Z, Du Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal[J]. Materials Characterization, 2024, 207: 113520. doi: 10.1016/j.matchar.2023.113520
|
[11] |
郭民, 雷玉珍, 赵健, 等. Cu75Pt钎料钎焊Ti60与TC4接头界面组织及性能[J]. 焊接学报, 2022, 43(2): 40 − 44.
Guo Min, Lei Yuzhen, Zhao Jian, et al. Interfacial microstructure and mechanical property of Ti60 and TC4 joint brazed with Cu75Pt filler metal[J]. Transactions of The China Welding Institution, 2022, 43(2): 40 − 44.
|
[12] |
Jing Y, Xiong H, Shang Y, et al. Design TiZrCuNi filler materials for vacuum brazing TA15 alloy[J]. Journal of Manufacturing Processes, 2020, 53: 328 − 335. doi: 10.1016/j.jmapro.2020.02.021
|
[13] |
Lu Q, Huang J, Ding Z, et al. Enhanced mechanical properties of TZM joint brazed at high temperature using Mo-Ni filler metal with Boron addition[J]. Welding in the World, 2024: 1-9.
|
[14] |
龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4.
Long Weimin, Zhang Guanxing, Zhang Qingke, et al. In situ synthesis of high-strength silver brazing material by brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.
|
[15] |
Marinho C, Toptan F, Guedes A, et al. Electrochemical response of Ti joints vacuum brazed with TiCuNi, AgCu, and Ag fillers[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 999 − 1011. doi: 10.1016/S1003-6326(21)65556-5
|
[16] |
Wang L, Li J, Liu K, et al. Study on microstructure and mechanical properties of vacuum brazing TC4 titanium alloy with Ti-37.5 Zr-15Cu-10Ni amorphous filler metal[J]. Materials Today Communications, 2024, 41: 110552. doi: 10.1016/j.mtcomm.2024.110552
|
[17] |
Yuan L, Xiong J, Du Y, et al. Effects of pure Ti or Zr powder on microstructure and mechanical properties of Ti6Al4V and Ti2AlNb joints brazed with TiZrCuNi[J]. Materials Science and Engineering: A, 2020, 788: 139602. doi: 10.1016/j.msea.2020.139602
|
[18] |
Tian H, He J, Hou J, et al. Analysis of the microstructure and mechanical properties of TiBw/Ti-6Al-4V Ti matrix composite joint fabricated using TiCuNiZr amorphous brazing filler metal[J]. Materials, 2021, 14(4): 875. doi: 10.3390/ma14040875
|
[19] |
Cai J, Hu S, Liu H, et al. Microstructural evolution and mechanical properties of Ti2AlNb/GH99 superalloy brazed joints using TiZrCuNi amorphous filler alloy[J]. Aerospace, 2023, 10(1): 73. doi: 10.3390/aerospace10010073
|
[20] |
Bai X, Liu M, Pang S, et al. Novel Ti–Zr–Co–Cu–M (M = Sn, V, Al) amorphous/nanocrystalline brazing fillers for joining Ti–6Al–4V alloy[J]. Materials Characterization, 2023, 196: 112607. doi: 10.1016/j.matchar.2022.112607
|
[21] |
Liu D, Xu J, Li X, et al. Influence of Al foil interlayer on performance of vacuum diffusion bonding joint of 6061 aluminium alloy[J]. Journal of Iron and Steel Research International, 2024: 1-9.
|
[22] |
冯亮, 李金山, 崔予文, 等. Ti-Zr 二元合金在 β 相区的互扩散行为研究[J]. 稀有金属材料与工程, 2011, 40(4): 610 − 614.
Feng Liang, Li Jinshan, Cui Yuwen, et al. Study on mutual diffusion behavior of Ti-Zr binary alloy in the β phase region[J]. Rare Metal Materials and Engineering, 2011, 40(4): 610 − 614.
|
[23] |
Harish D, Vishwanadh B, Alam T, et al. Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy[J]. Acta Materialia, 2019, 168: 63 − 75. doi: 10.1016/j.actamat.2019.01.044
|
[24] |
刘以波. TA2 工业纯钛高温组织演变研究[D]. 上海: 上海交通大学, 2010.
Liu, Yibo. Research on high-temperature microstructural evolution of TA2 industrial pure titanium[D]. Shanghai: Shanghai Jiao Tong University, 2010.
|
[25] |
Lin Y, Jiangtao X, Yu P, et al. Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy[J]. Materials Science and Engineering: A, 2020, 772: 138670. doi: 10.1016/j.msea.2019.138670
|
[26] |
Tewari R, Srivastava D, Dey G K, et al. Microstructural evolution in zirconium based alloys[J]. Journal of Nuclear Materials, 2008, 383(1): 153 − 171.
|
[27] |
Ren H S, Ren X Y, Xiong H P, et al. Nano-diffusion bonding of Ti2AlNb to Ni-based superalloy[J]. Materials Characterization, 2019, 155: 109813. doi: 10.1016/j.matchar.2019.109813
|
[28] |
Ganjeh E, Sarkhosh H, Bajgholi M, et al. Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys[J]. Materials characterization, 2012, 71: 31 − 40. doi: 10.1016/j.matchar.2012.05.016
|
[1] | JI Xinghong, LIANG Zhaofeng, ZHANG Gerui, LU Hao, ZHANG Liang, YUAN Bo. Effect of ultrasonic spinning with welding on the microstructure and mechanical properties of 7075 aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 36-42. DOI: 10.12073/j.hjxb.20231212004 |
[2] | WEI Shouzheng, WANG Zhiying, REN Xiaopeng, WANG Jianguo. Influence of bevel angle and wire offset on the microstructure and mechanical properties of Ti/Al joint by cold arc MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 59-66. DOI: 10.12073/j.hjxb.20210317002 |
[3] | BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003 |
[4] | SUN Huhao, XUE Songbai, FENG Xianmei, LIN Zhongqiang, LI Yang. Microstructure and mechanical properties of weld joint of marine 6082 aluminum alloy By TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 91-94. |
[5] | ZHANG Man, WANG Pengfei, ZHANG Lincai, LIN Yuebin. Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 55-58. |
[6] | ZHAO Xudong, XIAO Rongshi. Microstructure and mechanical properties of aluminum alloy and galvanized steel joints by fiber laser fusion welding-brazing using a rectangular spot with filler powder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 41-44. |
[7] | ZHANG Man, XUE Songbai, DAI Wei, LOU Yinbin, WANG Shuiqing. Mechanical properties and microstructure of 3003 Al-alloy brazed joint with Zn-Al filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 61-64. |
[8] | CHENG Donghai, HUANG Jihua, LIN Haifan, ZHANG Hua. Microstructure and mechanical analysis of Ti-6Al-4V laser butt weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 103-106. |
[9] | SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108. |
[10] | ZHANG Ling, XUE Song-bai, SHI Huai-jiang, WU Yu-xiu. Fracture microstructures and properties of Al-Li alloy brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 65-68. |