Advanced Search
MA Fujian, LI Xiwei, CHEN Shao, FU Dianyi, SHA Zhihua, ZHANG Shengfang. Analysis of temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 41-51. DOI: 10.12073/j.hjxb.20230726001
Citation: MA Fujian, LI Xiwei, CHEN Shao, FU Dianyi, SHA Zhihua, ZHANG Shengfang. Analysis of temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 41-51. DOI: 10.12073/j.hjxb.20230726001

Analysis of temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy

More Information
  • Received Date: July 25, 2023
  • Available Online: June 06, 2024
  • In order to investigate the influence of ultrasonic vibration on the temperature field of ultrasonic assisted friction stir welding of 6061 aluminum alloy, the contact interface friction coefficient model was established by analytical modeling, and the thermo-mechanical coupling finite element analysis model was established by numerical simulation. The temperature measurement experiment of ultrasonic assisted friction stir welding of 6061 aluminum alloy was carried out. By comparing the finite element analysis with the experimental results, it is found that the workpiece surface temperature distribution curve and sampling point temperature obtained by the analysis are basically consistent with the experimental results, which verifies the accuracy of the established model. The analysis results also show that ultrasonic vibration can change the friction state, reduce the welding friction heat generation, the peak temperature and the area of high temperature region. The effect of ultrasonic amplitude on welding peak temperature is more significant than frequency.

  • [1]
    栾国红, 柴鹏. 搅拌摩擦焊接技术应用现状和发展趋势[J]. 金属加工(热加工), 2008(24): 19 − 22.

    Luan Guohong, Chai Peng. FSW technology application and development trend[J]. MW Metal Working, 2008(24): 19 − 22.
    [2]
    丁伟, 武传松. 超声振动强化搅拌摩擦焊技术的研究进展[J]. 精密成形工程, 2017, 9(5): 63 − 72.

    Ding Wei, Wu Chuansong. Research progress of ultrasonic vibration enhanced friction stir welding[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 63 − 72.
    [3]
    贺地求, 胡雷, 赵志峰, 等. 超声功率对2219-T351铝合金搅拌摩擦焊接头组织与性能的影响[J]. 焊接学报, 2020, 41(3): 23 − 28.

    He Diqiu, Hu Lei, Zhao Zhifeng, et al. Effect of ultrasonic power on microstructure and properties of 2219-T351 aluminum alloy friction stir welding joint[J]. Transactions of the China Welding Institution, 2020, 41(3): 23 − 28.
    [4]
    Ma F J, Fu D Y, Liu Y, et al. The numerical simulation of temperature field in friction stir welding of 7075 aluminium alloy[J]. IOP Conference Series: Materials Science and Engineering, 2020, 751: 012081. doi: 10.1088/1757-899X/751/1/012081
    [5]
    赵俊杰, 宿浩, 石磊, 等. 超声功率对UVeFSW铝-镁合金异质接头组织与性能的影响[J]. 机械工程学报, 2020, 56(7): 24 − 32.

    Zhao Junjie, Su Hao, Shi Lei, et al. Effect of exterted ultrasonic power on microstructure and properties of dissimilar Al/Mg alloys UVeFSW joints[J]. Journal of Mechanical Engineering, 2020, 56(7): 24 − 32.
    [6]
    任朝晖, 李存旭, 谢吉祥, 等. 超声辅助搅拌摩擦焊温度场及残余应力场分析[J]. 焊接学报, 2018, 39(12): 53 − 57.

    Ren Zhaohui, Li Cunxu, Xie Jixiang, et al. Analysis on temperature field and residual stress field of ultrasonic assisted friction stir welding[J]. Transactions of the China Welding Institution, 2018, 39(12): 53 − 57.
    [7]
    Yang C L, Wu C S, Shi L. Analysis of friction reduction effect due to ultrasonic vibration exerted in friction stir welding[J]. Journal of Manufacturing Processes, 2018, 35: 118 − 126. doi: 10.1016/j.jmapro.2018.07.025
    [8]
    Wang X, Zhang X K, Shi L, et al. Enhancing heat and mass transfer to suppress void defects in friction stir welding by superimposing ultrasonic vibration[J]. Archives of Civil and Mechanical Engineering, 2023, 23: 256. doi: 10.1007/s43452-023-00799-0
    [9]
    Shi L, Chen J, Wu C S, et al. Analysis of heat and mass transfer in ultrasonic vibration-enhanced friction stir welding of 2195 Al-Li alloy[J]. Science and Technology of Welding and Joining, 2021, 26(5): 363 − 370. doi: 10.1080/13621718.2021.1917748
    [10]
    Zhao W Z, Wu C S, Su H. Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding[J]. Journal of Manufacturing Processes, 2020, 56: 967 − 980. doi: 10.1016/j.jmapro.2020.05.047
    [11]
    Zhao W Z, Wu C S, S L. The influence of acoustic antifriction on heat generation and material flow in ultrasonic-assisted friction stir welding[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 2633 − 2654. doi: 10.1007/s00170-022-08858-1
    [12]
    Simar A, Brechet Y, Meester D B, et al. Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6[J]. Acta Materialia, 2007, 55(18): 6133 − 6143. doi: 10.1016/j.actamat.2007.07.012
    [13]
    聂浩, 徐洋, 柯黎明, 等. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 88 − 93.

    Nie Hao, Xu Yang, Ke Liming, et al. Effect of rotational speed on frictional heat production and interface structure of thick plate Al/Mg dissimilar materials by friction stir welding[J]. Materials Reports, 2023, 37(8): 88 − 93.
    [14]
    Hess D P, Soom A. Normal vibrations and friction under harmonic loads: part Ⅱ-rough planar contacts[J]. Journal of Tribology, 1991, 113(1): 87 − 92. doi: 10.1115/1.2920608
    [15]
    Greenwood J A, Williamson J B P P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London A, 1966, 295(1442): 300 − 319.
    [16]
    赵永胜, 牛娜娜, 杨聪彬, 等. 基于多尺度下塑性指数模型的结合面接触刚度计算方法[J]. 振动与冲击, 2022, 41(3): 115 − 122.

    Zhao Yongsheng, Niu Nana, Yang Congbin, et al. Caculation method for contact stiffness of contact surface based on multi-scale plastic index model[J]. Journal of Vibration and Shock, 2022, 41(3): 115 − 122.
    [17]
    Kelly G S, Advani S G, Gillespie J W, et al. A model to characterize acoustic softening during ultrasonic consolidation[J]. Journal of Materials Processing Technology, 2013, 213(12): 1835 − 1845.
    [18]
    Yao Z, Kim G Y, Wang Z, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments[J]. International Journal of Plasticity, 2012, 39: 75 − 87. doi: 10.1016/j.ijplas.2012.06.003
    [19]
    石磊, 武传松. 6061铝合金超声振动强化搅拌摩擦焊接过程的数值模拟[C]//第二十次全国焊接学术会议论文集, 2015: 548-553.

    Shi Lei, Wu Chuansong. 6061 Numerical simulation of aluminum alloy [C]//Proceedings of the 20th National Welding Academic Conference, 2015: 548-553.
    [20]
    全国钢标准化技术委员会. 金属材料维氏硬度试验 第1部分: 试验方法, GB/T 4340.1-2009[S]. 北京: 中国标准出版社, 2009.

    Technical Committee on Steel of Standardization Committee of China. Metallic materials vickers hardness test Part 1:Test method, GB/T 4340.1-2009 [S]. Beijing: China Standard Press, 2009.
    [21]
    Budak E, Ozlu E. Development of a thermomechanical cutting process model for machining process simulations[J]. CIRP Annals-Manufacturing Technology, 2008, 57(1): 97 − 100. doi: 10.1016/j.cirp.2008.03.008
    [22]
    Storck H, Littmann W, Wallaschek J, et al. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors[J]. Ultrasonics, 2002, 40(1-8): 379 − 383. doi: 10.1016/S0041-624X(02)00126-9
    [23]
    张正伟, 张昭, 张洪武. 搅拌摩擦焊接残余应力及残余变形数值分析[J]. 计算力学学报, 2013, 30(S1): 16 − 21.

    Zhang Zhengwei, Zhang Zhao, Zhang Hongwu. Investigations on residual stress and residual distortion of friction stir welding[J]. Chinese Journal of Computational Mechanics, 2013, 30(S1): 16 − 21.
    [24]
    刘西畅, 李文亚, 高彦军, 等. 铝合金双轴肩搅拌摩擦焊过程材料流动行为[J]. 焊接学报, 2021, 42(3): 48 − 56.

    Liu Xichang, Li Wenya, Gao Yanjun, et al. Material flow behavior during bobbin-tool friction stir welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(3): 48 − 56.
    [25]
    崔俊华, 柯黎明, 刘文龙, 等. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014(13): 11 − 17.

    Cui Junhua, Ke Liming, Liu Wenlong, et al. Thermo-mechanical coupled finite element model for whole process of friction stir welding[J]. Journal of Materials Engineering, 2014(13): 11 − 17.
    [26]
    Buffa G. Joining Ti6Al4V and AISI 304 through friction stir welding of lap joints: experimental and numerical analysis[J]. International Journal of Material Forming, 2016, 9(1): 59 − 70. doi: 10.1007/s12289-014-1206-7
    [27]
    毕然, 何怡刚, 史露强, 等. 基于卡方检验的莱斯信道统计特性可信性评估[J]. 计算机工程与设计, 2019, 40(3): 632 − 637.

    Bi Ran, He Yigang, Shi Luqiang, et al. Credibility evaluation of Rice channel statistics based on chi-square test[J]. Computer Engineering and Design, 2019, 40(3): 632 − 637.
  • Related Articles

    [1]SONG Fengyu, ZHOU Laihong, LUN Wenshan, HUANG Zengyang, BO Xiangyang. Study on grain growth behavior of acicular ferrite in weld deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 23-28. DOI: 10.12073/j.hjxb.20200929003
    [2]ZHANG Hongxia, LI Hongzhi, WANG Zhibin, WANG Wenxian, ZHANG Xinbao, YAN Zhifeng. Effect of heat input on microstructure and mechanical properties of ultra-thin 443 ferritic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 15-18,34.
    [3]ZHANG Yong, QIN Zuoxiang, XU Hongji, LU Xing, TONG Wei. Microstructure and corrosion resistance of welding joints of economic ferritic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 18-22.
    [4]WANG Xuyou, LEI Zhen, MAO Hui, DU Bing, . Appearance of weld and impact toughness for the joints of ferrite stainless steel by laser-MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 21-25.
    [5]XIA Qing, YANG Di-xin, YAO Jun-bang. Flashing butt welding between ferrite spheroidal graphite cast iron and 20 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 28-30,34.
    [6]YU Sheng fu, YU Yang chun, XIE Ming li, LI Zhi yuan. Effect of secondary thermal cycle on intragranular ferrite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 89-92,96.
    [7]Yin Yousheng. On Some Problems for Ferritic Stainless Steel Grain Boundary Corrosion During Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (1): 39-48.
    [8]Li Yajiang, Zhang Yonglan. Microstructural characteristics in heat-affected zone of Crl8Mo2 ferritic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 130-134.
    [9]Li Ailing, Zhai Yang, Yan Cheng, Chen Jianhong, Nobuya lwamoto. THE INFLUENCE OF ALLOY ELEMENTS ON THE FORMATION OF ACICULAR FERRITE IN WELD METAL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (3): 163-171.
    [10]Liu Tingcai. WELDABILITY OF DUPLEX FERRITIC-AUSTENITIC STAINLESS STEELS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (4): 213-222.
  • Cited by

    Periodical cited type(1)

    1. 李晓迪,程战,邹斌华,王蒙. 电火花沉积技术研究现状及发展趋势. 电加工与模具. 2024(S1): 18-25 .

    Other cited types(0)

Catalog

    Article views (117) PDF downloads (45) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return