Citation: | WANG Zhiwei, LIN Liting, LI Xin. Research progress on low-temperature sintered silver and gold-based surface interconnections[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 116-123. DOI: 10.12073/j.hjxb.20230613010 |
Sintered silver has strong thermal conductivity, electrical conductivity, and mechanical qualities, allowing it to accomplish "low-temperature sintering, high-temperature applications" in high-temperature high-power electronic devices. However, the interconnections between sintered silver and gold-based surfaces continue to suffer from issues such as low shear strength and poor dependability. Therefore, firstly, the interconnection mechanism and performance of sintered silver and different interfaces are compared, focusing on summarizing the sintered silver-gold interconnection mechanism and key influencing factors. Then, the existing sintered silver-gold interconnection processes are summarized in terms of sintering process, gold-based interface preparation and reliability. Finally, through the review of the research results in the field of silver-gold interconnections, the future development direction of the silver-gold interconnections topic is prospected.
[1] |
Pengelly R, Wood S, Milligan J, et al. A review of GaN on SiC high-mobility power transistors and MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1764 − 1783. doi: 10.1109/TMTT.2012.2187535
|
[2] |
Yu F, Cui J, Zhou Z, et al. Reliability of Ag sintering for power semiconductor die attach in high-temperature applications[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 7083 − 7095. doi: 10.1109/TPEL.2016.2631128
|
[3] |
杨婉春, 胡少伟, 祝温泊, 等. 低温烧结纳米银膏研究进展[J]. 焊接学报, 2022, 43(11): 137 − 146. doi: 10.12073/j.hjxb.20220708003
Yang Wanchun, Hu Shaowei, Zhu Wenbo, et al. Research progress of low-temperature sintered nano-silver paste[J]. Transactions of the China Welding Institution, 2022, 43(11): 137 − 146. doi: 10.12073/j.hjxb.20220708003
|
[4] |
Lin L, Zhang Y, Li X. Study on the performance of silver paste sintered sealing joints for hermetic packaging[J]. China Welding, 2022, 31(1): 29 − 36.
|
[5] |
孟昭, 杨庆浩, 耿若愚. 现代表面镀覆科学与技术基础[M]. 北京: 冶金工业出版社, 2022.
Meng Zhao, Yang Qinghao, Geng Ruoyu. Fundamentals of modern surface plating science and technology[M]. Beijing: Metallurgical Industry Press, 2022.
|
[6] |
罗树斌. 烧结纳米银焊点高温老化后的组织和性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
Luo Shubin. Study on the microstructure and properties of sintering nanosilver solder joints after high temperature aging [D]. Harbin: Harbin Institute of Technology, 2019.
|
[7] |
Joo S, Baldwin D F. Adhesion mechanisms of nanoparticle silver to substrate materials: identification[J]. Nanotechnology, 2009, 21(5): 055204.
|
[8] |
王美玉. 无压低温烧结银-镍界面互连方法及性能研究[D]. 天津: 天津大学, 2019.
Wang Meiyu. Processing and characterization of pressureless low-temperature sintered-silver bonding on nickel metallization [D]. Tianjin: Tianjin University, 2019.
|
[9] |
Ide E, Angata S, Hirose A, et al. Metal–metal bonding process using Ag metallo-organic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385 − 2393. doi: 10.1016/j.actamat.2005.01.047
|
[10] |
李洁. 微-纳颗粒混合银焊膏的裸铜基板连接工艺及性能研究[D]. 天津: 天津大学, 2017.
Li Jie. A study of connection process and properties of die bonding on bare copper substrate by using a silver paste hybrid with micro and nano particles[D]. Tianjin: Tianjin University, 2017.
|
[11] |
Du C, Li X, Mei Y, et al. An explanation of sintered silver bonding formation on bare copper substrate in air[J]. Applied Surface Science, 2019, 490: 403 − 410. doi: 10.1016/j.apsusc.2019.06.105
|
[12] |
Zhang H, Li W, Gao Y, et al. Enhancing low-temperature and pressureless sintering of micron silver paste based on an ether-type solvent[J]. Journal of Electronic Materials, 2017, 46(8): 5201 − 5208. doi: 10.1007/s11664-017-5525-6
|
[13] |
Kim D, Chen C, Pei C, et al. Thermal shock reliability of a GaN die-attach module on DBA substrate with Ti/Ag metallization by using micron/submicron Ag sinter paste[J]. Japanese Journal of Applied Physics, 2019, 58: 1 − 10.
|
[14] |
吴炜祯, 杨帆, 胡博, 等. 宽禁带半导体用烧结银膏与金属化基板连接机制研究[J]. 机车电传动, 2022, 6: 149 − 155.
Wu Weizhen, Yang Fan, Hu Bo, et al. A study on connection mechanism between sintering silver paste for wide bandgap semiconductor and metalized substrate[J]. Electric Drive for Locomotives, 2022, 6: 149 − 155.
|
[15] |
Yan J, Zhang D, Zou G, et al. Sintering bonding process with Ag nanoparticle paste and joint properties in high temperature environment[J]. Journal of Nanomaterials, 2016(2016): 1 − 8.
|
[16] |
Chua S, Siow K. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 ℃[J]. Journal of Alloys and Compounds, 2016, 687: 486 − 498. doi: 10.1016/j.jallcom.2016.06.132
|
[17] |
Zhao S, Dai Y, Qin F, et al. Effect of surface finish metallization layer on shearing fracture toughness of sintered silver bonded joints[J]. Engineering Fracture Mechanics, 2022, 264(2): 108355.
|
[18] |
Akada Y, Tatsumi H, Yamaguchi T, et al. Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior[J]. Materials Transactions, 2008, 49(7): 1537 − 1545. doi: 10.2320/matertrans.MF200805
|
[19] |
Paknejad S, Dumas G, West G, et al. Microstructure evolution during 300 ℃ storage of sintered Ag nanoparticles on Ag and Au substrates[J]. Journal of Alloys and Compound, 2014, 617: 994 − 1001. doi: 10.1016/j.jallcom.2014.08.062
|
[20] |
Xu Q, Mei Y, Li X, et al. Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates[J]. Journal of Alloys and Compounds, 2016, 675: 317 − 324. doi: 10.1016/j.jallcom.2016.03.133
|
[21] |
Lin L, Li X, Zhang H. An explanation for the effect of Au surface finish on the quality of sintered Ag-Au joints[J]. Applied Surface Science, 2023, 615: 156356. doi: 10.1016/j.apsusc.2023.156356
|
[22] |
Chen C, Suganuma K, Iwashige T, et al. High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates[J]. Journal of Materials Science Materials in Electronics, 2018, 29(10): 1785 − 1797.
|
[23] |
Chen C, Zhang Z, Suganuma K. Evaluation of high temperature reliability of SiC die attached structure with sinter micron-size Ag particles paste on Ni-P/Pd/Au plated substrates[C]//8th Electronics System-Integration Technology Conference, Norway: Institute of Electrical and Electronics Engineers, 2020: 1-5.
|
[24] |
Bae K, Seong J, Jong Y, et al. Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process[J]. Journal of Electronic Materials, 2008, 37(4): 527 − 534. doi: 10.1007/s11664-007-0360-9
|
[25] |
谭谦. 无氰化学镀金工艺的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
Tan Qian. The research of non-cyanide electroless gold plating[D]. Harbin: Harbin Institute of Technology, 2007.
|
[26] |
Kim M, Nishikawa H. Influence of ENIG defects on shear strength of pressureless Ag nanoparticle sintered joint under isothermal aging[J]. Microelectronics Reliability, 2017, 76(9): 420 − 425.
|
[27] |
Zhang H, Wang W, Bai H, et al. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 2018, 774: 487 − 494.
|
[28] |
Blank T, Bruns M, C Kübel, et al. Low temperature silver sinter processes on ENIG-surfaces[C]// 9th International Conference on Integrated Power Electronics Systems, Nuremberg: Verband der Elektrotechnik, 2016: 1-6.
|
[29] |
王晓敏. 低温烧结纳米银焊膏与镀金基板互连机理与工艺研究[D]. 天津: 天津大学, 2018.
Wang Xiaomin. A study of die bonding on gold-plated substrate using nanosilver paste[D]. Tianjin: Tianjin University, 2018.
|
[30] |
Wang M, Mei Y, Hu W, et al. Pressureless sintered-silver as die attachment for bonding Si and SiC chips on silver, gold, copper, and nickel metallization for power electronics packaging: the practice and science[J]. Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(2): 2645 − 2655. doi: 10.1109/JESTPE.2022.3150223
|
[31] |
Zhang H, Zhao Z, Zou G, et al. Failure analysis and reliability evaluation of silver-sintered die attachment[J]. Microelectronics Reliability, 2019, 94: 46 − 55. doi: 10.1016/j.microrel.2019.02.002
|
[32] |
Zhang Z, Chen C, Liu G, et al. Enhancement of bonding strength in Ag sinter joining on Au surface finished substrate by increasing Au grain-size[J]. Applied Surface Science, 2019, 485: 468 − 475. doi: 10.1016/j.apsusc.2019.04.228
|
[33] |
Kim M, Nishikawa H. Transmission electron microscopy investigation on the oxidation behavior of electroless Ni/immersion Au surface finish at 250 °C[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(11): 8522 − 8527.
|
[34] |
Fan T, Shang P, Li C, et al. Effect of electroplated Au layer on bonding performance of Ag pastes[J]. Journal of Alloys and Compounds, 2018, 731: 1280 − 1287.
|
[35] |
Wai L, Wei S, Yuan H, et al. High temperature die attach material on ENEPIG surface for high temperature (250 °C/500 hour) and temperature cycle (−65 to + 150 °C) applications[C]//16th Electronics Packaging Technology Conference, Singapore: Institute of Electrical and Electronics Engineers, 2014: 229-234.
|
[36] |
张崤君, 李含. ENEPIG在倒装芯片用陶瓷外壳中的应用可行性[J]. 先进封装技术, 2020, 45(6): 484 − 488.
Zhang Xiaojun, Li Han. Application feasibility of ENEPIG in ceramic package for flip chip[J]. Advanced Packaging Technology, 2020, 45(6): 484 − 488.
|
[37] |
谢梦, 张庶, 向勇, 等. 化学镀镍浸金和化学镀镍镀钯浸金表面处理工艺概述及发展趋势[J]. 印制电路信息, 2013(S1): 185 − 188.
Xie Meng, Zhang Shu, Xiang Yong, et al. Current status and development prospect of ENIG and ENEPIG[J]. Printed Circuit Information, 2013(S1): 185 − 188.
|
[38] |
Thomas B, Scherer T. , Bruns M, et al. Low-temperature silver sintering processes on high performance ENIG, EPIG, ENEPIG and ISIG[C]//6th Electronic System-Integration Technology Conference, Grenoble: France, 2016: 1-6.
|
[39] |
Chen C, Zhang Z, Wang Q, et al. Robust bonding and thermal stable Ag–Au joint on ENEPIG substrate by micron-scale sinter Ag joining in low temperature pressure-less[J]. Journal of Alloys and Compounds, 2020, 828: 154397. doi: 10.1016/j.jallcom.2020.154397
|
[40] |
Chen C, Zhang Z, Kim D, et al. Interface reaction and evolution of micron-sized Ag particles paste joining on electroless Ni-/Pd-/Au-finished DBA and DBC substrates during extreme thermal shock test[J]. Journal of Alloys and Compounds, 2021, 862: 158596. doi: 10.1016/j.jallcom.2021.158596
|
[41] |
Liu Y, Chen C, Kim D, et al. Modified Ni/Pd/Au-finished DBA substrate for deformation-resistant Ag-Au joint during long-term thermal shock test[J]. Journal of Materials Science-Materials in Electronics, 2021, 32(15): 20384 − 20393. doi: 10.1007/s10854-021-06549-3
|