Citation: | KE Wenchao, ZHANG Kang, ZHOU Naixun, CHEN Wenchang, CHEN Long, PANG Bowen, ZENG Zhi. Joining mechanism and element distribution in laser micro-welding of NiTi-Cu dissimilar alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 21-27. DOI: 10.12073/j.hjxb.20230613006 |
To satisfy the thermo-driven requirements of NiTi shape memory alloys in different industrial applications, NiTi wire and Cu plate were welded by laser micro-welding technology. The microstructure and element distribution of the weld were experimentally studied using optical microscopy (OM) and energy dispersive spectrometer (EDS). Based on ANSYS Fluent software, a three-dimensional (3D) computational fluid dynamics (CFD) model for laser micro-welding of NiTi-Cu dissimilar alloys was established to analyze the evolutions of temperature and fluid flow fields and the element transport mechanism. The results indicate that the process of laser micro-welding can be mainly divided into 3 procedures, namely the "drilling" procedure of laser in NiTi wire, the preheating procedure of laser energy on Cu plate, and the "drilling" procedure of laser in Cu plate. The mixing of Ni, Ti, and Cu elements mainly occurs in the drilling process of laser in Cu plate, where the elements are mixing well under the driven of the metal vapor recoil pressure and Marangoni vortex. The Cu content in the molten pool is helpful to form low hardness Cu-Ti intermetallic compounds (IMCs), reducing the possibility of the formation of brittle Ni-Ti IMCs. The experimental and simulation results are in good agreement. The research provides important theoretical support for optimization of the laser micro-welding of NiTi-Cu dissimilar alloys.
[1] |
Oliveira J P, Miranda R M, Braz Fernandes F M. Welding and joining of niti shape memory alloys: a review[J]. Progress in Materials Science, 2017, 88: 412 − 466. doi: 10.1016/j.pmatsci.2017.04.008
|
[2] |
Ke W, Oliveira J P, Cong B, et al. Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys[J]. Additive Manufacturing, 2022, 50: 102513. doi: 10.1016/j.addma.2021.102513
|
[3] |
Mehrpouya M, Gisario A, Elahinia M. Laser welding of NiTi shape memory alloy: A review[J]. Journal of Manufacturing Processes, 2018, 31: 162 − 186. doi: 10.1016/j.jmapro.2017.11.011
|
[4] |
许博, 王颖, 张萌, 等. Nb合金化对电弧增材制造NiTi基形状记忆合金的影响[J]. 焊接学报, 2021, 42(8): 1 − 7.
Xu Bo, Wang Ying, Zhang Meng, et al. Effect of Nb alloying on wire arc additive manufacturing NiTi-based shape memory alloys[J]. Transactions of the China Welding Institution, 2021, 42(8): 1 − 7.
|
[5] |
Niu H, Jiang H C, Zhao M J, et al. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding[J]. Journal of Materials Science & Technology, 2021, 61: 16 − 24.
|
[6] |
Gao F Y, Mu Z Z, Ma Z W, et al. Fine microstructure characterization of titanium alloy laser narrow gap welded joint[J]. China Welding, 2021, 30(3): 31 − 38.
|
[7] |
Zhong Y, Xie J, Chen Y, et al. Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer[J]. Materials Letters, 2022, 306: 130896. doi: 10.1016/j.matlet.2021.130896
|
[8] |
李胜利, 任春雄, 杭春进, 等. 极端热冲击和电流密度耦合Sn-3.0Ag-0.5Cu焊点组织演变[J]. 机械工程学报, 2022, 58(2): 291 − 299. doi: 10.3901/JME.2022.02.291
Li Shengli, Ren Chunxiong, Hang Chunjin, et al. Microstructure evolution of Sn-3.0Ag-0.5Cu solder joints under extreme temperature changes and current stressing[J]. Journal of Mechanical Engineering, 2022, 58(2): 291 − 299. doi: 10.3901/JME.2022.02.291
|
[9] |
Zeng Z, Oliveira J P, Yang M, et al. Functional fatigue behavior of NiTi-Cu dissimilar laser welds[J]. Materials & Design, 2017, 114: 282 − 287.
|
[10] |
Shamsolhodaei A, Oliveira JP, Schell N, et al. Controlling intermetallic compounds formation during laser welding of NiTi to 316L stainless steel[J]. Intermetallics, 2020, 116: 106656. doi: 10.1016/j.intermet.2019.106656
|
[11] |
Sun Q, Chen J, Wang X, et al. Study on weld formation and segregation mechanism for dissimilar pulse laser welding of NiTi and Cu wires[J]. Optics and Laser Technology, 2021, 140: 107071. doi: 10.1016/j.optlastec.2021.107071
|
[12] |
柯文超, 从保强, 祁泽武, 等. NiTi形状记忆合金电弧熔融涂覆及微连接机理[J]. 机械工程学报, 2022, 58(2): 176 − 184. doi: 10.3901/JME.2022.02.176
Ke Wenchao, Cong Baoqiang, Qi Zewu, et al. Arc-fused coating process and micro-joining mechanism of NiTi shape memory alloys[J]. Journal of Mechanical Engineering, 2022, 58(2): 176 − 184. doi: 10.3901/JME.2022.02.176
|
[13] |
Zhang K, Liu F, Tan C, et al. Effect of heat input modes on microstructure, mechanical properties and porosity of laser welded NiTi-316L joints: A comparative study[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022, 848: 143426. doi: 10.1016/j.msea.2022.143426
|
[14] |
Ke W, Zeng Z, Oliveira J P, et al. Heat transfer and melt flow of keyhole, transition and conduction modes in laser beam oscillating welding[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123821. doi: 10.1016/j.ijheatmasstransfer.2022.123821
|
[15] |
Mayeli P, Sheard G J. Buoyancy-driven flows beyond the Boussinesq approximation: A brief review[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105316. doi: 10.1016/j.icheatmasstransfer.2021.105316
|
[16] |
宫建锋, 李俐群, 孟圣昊. 圆形摆动激光对5A06铝合金激光焊接熔池流动行为的影响分析[J]. 焊接学报, 2022, 43(11): 50 − 55.
Gong Jianfeng, Li Liqun, Meng Shenghao. Influence of circular oscillating laser on the melt flow behavior during 5A06 aluminum alloy laser welding[J]. Transactions of the China Welding Institution, 2022, 43(11): 50 − 55.
|
[17] |
Gao S, Feng Y, Wang J, et al. Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition[J]. Optics & Laser Technology, 2021, 142: 107215.
|
[18] |
Chouhan A, Hesselmann M, Toenjes A, et al. Numerical modelling of in-situ alloying of Al and Cu using the laser powder bed fusion process: A study on the effect of energy density and remelting on deposited track homogeneity[J]. Additive Manufacturing, 2022, 59: 103179. doi: 10.1016/j.addma.2022.103179
|
[19] |
Hozoorbakhsh A, Hamdi M, Sarhan A, et al. CFD modelling of weld pool formation and solidification in a laser micro-welding process[J]. International Communications in Heat and Mass Transfer, 2019, 101: 58 − 69. doi: 10.1016/j.icheatmasstransfer.2019.01.001
|
[20] |
Lee J Y, Ko S H, Farson D F, et al. Mechanism of keyhole formation and stability in stationary laser welding[J]. Journal of Physics D-Applied Physics, 2002, 35(13): 1570 − 1576. doi: 10.1088/0022-3727/35/13/320
|
[21] |
Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2016, 12: 178 − 188. doi: 10.1016/j.addma.2016.05.003
|
[22] |
Fuhrich T, Berger P, Hügel H. Marangoni effect in laser deep penetration welding of steel[J]. Journal of Laser Application, 2001, 13(5): 178 − 186. doi: 10.2351/1.1404412
|
[23] |
Xie X, Zhou J, Long J. Numerical study on molten pool dynamics and solute distribution in laser deep penetration welding of steel and aluminum[J]. Optics and Laser Technology, 2021, 140: 107085. doi: 10.1016/j.optlastec.2021.107085
|
[1] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[2] | ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26. |
[3] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[4] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[5] | LI Yongqiang, Zhao He, Zhao Xihua, Jiang Wenhu, Zhang Weihua. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 29-32. |
[6] | LUO Yi, LIU Jinhe, YE Hong, YAN Zhonglin, SHEN Bin. Numerical simulation on temperature field of electron beam welding of AZ61 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 73-76. |
[7] | WANG Qing, ZHANG Yanhua. Numerical simulation on electron beam welding temperature field of heat-resisting superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 97-100. |
[8] | MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59. |
[9] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
1. |
曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 .
![]() | |
2. |
李冬毓,孙万田. 稳定化热处理对厚壁TP347钢管焊接接头组织和性能的影响. 焊接. 2023(05): 45-50 .
![]() |