Citation: | CHENG Xianming, YANG Ke, SHAO Zhuang, WANG Jian, HUANG Sishu, ZHANG Xin. Effect of ultrasonic welding energy on the bonding properties of Cu-Al cables[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 65-70. DOI: 10.12073/j.hjxb.20230504001 |
Ultrasonic welding was used to connect BVR2.5 Cu cables and BLV6 Al cables. SEM, EDS, XRD and universal tensile testing machine were used to investigate the effect of ultrasonic welding energy on the bonding properties for Cu-Al cables joints. The results show that effective joining of Cu-Al cables could be achieved by ultrasonic welding. With the increase of welding energy, the diffusion distance of the atoms at the Cu-Al interface increases, but the intermediate phase is not formed, and the tensile strength of the joint increases and then decreases. At low welding energies, the tensile strength of the joint depends on the metallurgical bonding area of the Cu-Al conductor. When the welding energy exceeds 300 J, the tensile strength of the joint depends on the effective bearing area of the Al side. The joints obtained peak tensile load (409.8 N ± 8.9 N) at the welding energy of 300 J and fractured on the Al side in tension. The fracture was in ductile fracture, which indicates the good performance of the joint.
[1] |
Cheng X M, Yang K, Wang J, et al. Ultrasonic system and ultrasonic metal welding performance: A status review[J]. Journal of Manufacturing Processes, 2022, 84: 1196 − 1216. doi: 10.1016/j.jmapro.2022.10.067
|
[2] |
Mostafavi S, Hesser D F, Markert B. Effect of process parameters on the interface temperature in ultrasonic aluminum wire bonding[J]. Journal of Manufacturing Processes, 2018, 36(3): 104 − 114.
|
[3] |
Liu J, Cao B. Microstructure characteristics and mechanical properties of the Cu/Al dissimilar joints by electric current assisted ultrasonic welding[J]. Journal of Materials Processing Technology, 2021, 297: 117239 − 117249. doi: 10.1016/j.jmatprotec.2021.117239
|
[4] |
崔庆波, 李玉龙, 胡瑢华, 等. Al/Ni异种金属超声波点动焊接工艺及界面组织分析[J]. 焊接学报, 2016, 37(11): 59 − 62.
Cui Qingbo, Li Yulong, Hu Ronghua, et al. Study on ultrasonic spot welding process and interface microstructure of Al /Ni dissimilar metals joint[J]. Transactions of the China Welding Institution, 2016, 37(11): 59 − 62.
|
[5] |
Ni Z L, Yang J J, Gao Z T, et al. Joint formation in ultrasonic spot welding of aluminum to copper and the effect of particle interlayer[J]. Journal of Manufacturing Processes, 2020, 50: 57 − 67. doi: 10.1016/j.jmapro.2019.12.027
|
[6] |
赵玉津, 陈瑶, 罗震, 等. 铝铜超声波焊接接头性能的正交试验分析[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(7): 735 − 740.
Zhao Yujin, Chen Yao, Luo Zhen, et al. Analysis of orthogonal test of properties of aluminum/copper ultrasonic metal welded joints[J]. Journal of Tianjin University(Science and Technology), 2018, 51(7): 735 − 740.
|
[7] |
谷晓燕, 刘东锋, 刘婧, 等. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600 − 1607.
Gu Xiaoyan, Liu Dongfeng, Liu Jing, et al. Effect of welding energy on microstructure and mechanica properties of Cu/Al joints welded by ultrasonic welding[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1600 − 1607.
|
[8] |
蒋召平, 冯梦楠, 罗震, 等. 铝/铜异质金属超声波焊接工艺研究[J]. 焊接技术, 2018, 47(4): 82 − 87.
Jiang Zhaoping, Feng Mengnan, Luo Zhen, et al. Study of ultrasonic welding process for Al/Cu heterogeneous metals[J]. Welding Technology, 2018, 47(4): 82 − 87.
|
[9] |
Liu J, Cao B, Yang J. Modelling intermetallic phase growth during high-power ultrasonic welding of copper and aluminum[J]. Journal of Manufacturing Processes, 2018, 35: 595 − 603. doi: 10.1016/j.jmapro.2018.09.008
|
[10] |
Li H, Cao B, Yang J W, et al. Modeling of resistance heat assisted ultrasonic welding of Cu-Al joint[J]. Journal of Materials Processing Technology, 2017, 256: 121 − 131.
|
[11] |
李欢, 周亢, 张锦洲, 等. 工艺参数对Cu/Al大功率超声波焊接微观组织和力学性能的影响[J]. 焊接学报, 2020, 41(4): 20 − 25. doi: 10.12073/j.hjxb.20191029002
Li Huan, Zhou Kang, Zhang Jinzhou, et al. Influence of process parameters on microstructure and mechanical properties in high power ultrasonic welding of Cu/Al[J]. Transactions of the China Welding Institution, 2020, 41(4): 20 − 25. doi: 10.12073/j.hjxb.20191029002
|
[12] |
成先明, 杨可, 刘思沾, 等. 超声波焊接工艺参数对铜导线接头性能的影响[J]. 中国有色金属学报, 2022, 32(11): 3341 − 3351. doi: 10.11817/j.ysxb.1004.0609.2021-42423
Cheng Xianming, Yang Ke, Liu Sizhan, et al. Effect of ultrasonic welding process parameters on properties of copper conductor joint[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(11): 3341 − 3351. doi: 10.11817/j.ysxb.1004.0609.2021-42423
|
[13] |
Cheng X M, Yang K, Wang J, et al. Ultrasonic welding of Cu to Al cables bonding: Evolution of microstructure and mechanical properties[J]. Materials Characterization, 2023, 200: 112905. doi: 10.1016/j.matchar.2023.112905
|
[14] |
Muhammad N A, Wu C S, Tian W. Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints[J]. Journal of Alloys and Compounds, 2019, 785: 512 − 522. doi: 10.1016/j.jallcom.2019.01.170
|
[15] |
Ni Z L, Liu Y, Wang Y H, et al. Interfacial bonding mechanism and fracture behavior in ultrasonic spot welding of copper sheets[J]. Materials Science & Engineering A, 2022, 833: 142536.
|
[1] | LI Chengxiang, XU Chennan, ZHOU Yan, CHEN Dan, MI Yan. Atomic diffusion behavior in the interface formation of copper-aluminum electromagnetic pulse welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 22-31. DOI: 10.12073/j.hjxb.20230215002 |
[2] | WU Peng, WANG Yiping, YANG Dongsheng, FENG Jiayun, TIAN Yanhong. Molecular dynamics simulation study of sintering mechanism and thermal conductivity of nano-Ag particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 1-7. DOI: 10.12073/j.hjxb.20230613002 |
[3] | YU Zhangqin, HU Jianhua, YANG Zheng, HUANG Shangyu. Interfacial diffusion process of Cu/Al magnetic pulse semi-solid assisted brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 120-128. DOI: 10.12073/j.hjxb.20211221001 |
[4] | YUAN Xiaojing, GUO Xiaohui, GUAN Ning, WANG Xuping, ZHAN Jun, SUN Lei. Molecular dynamics simulation of NiCr alloy fabricated by micro-plasma additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 25-32. DOI: 10.12073/j.hjxb.20210131001 |
[5] | WANG Xingxing, HE Peng, LI Shuai, ZHANG Shuye, LUO Jingyi, SATO Yutaka. Application of high-throughput methods in the field of brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 1-7. DOI: 10.12073/j.hjxb.20200809001 |
[6] | FENG Yuqi, LUO Yi, SUN Yibo, WANG Xiaodong, ZHANG Miaomiao. Molecular dynamic simulation of interface diffusion behavior during melting joining of thermoplastic polymer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 41-44. |
[7] | ZENG Fanlin, SUN Yi, ZHOU Yu, LI Qingkun. Molecular dynamics simulations of interface interactions of POSS in lead free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 17-20,24. |
[8] | CHENG Hongtao, YANG Jianguo, LIU Xuesong, FANG Hongyuan. Molecular dynamics simulation of diffusion behavior between the interface of Cu/Sn[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 49-52. |
[9] | LI Hong, LI Zhuoxin. Dynamic simulation of isothermal solidification in steel Cu steel system rolling-diffusion bonding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 61-64. |
[10] | ZOU Jia-sheng, CHU Ya-jie, ZHAI Jian-guang, CHEN Zheng. Dynamic study in partial transient liquid phase bonding of Si3N4/Ti/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 43-46,51. |
1. |
任二花,李晓延,张虎,韩旭. 空位对Cu/Sn焊点中Cu_3Sn层元素扩散的影响. 电子元件与材料. 2022(04): 381-386 .
![]() |