Citation: | YAO Zhehe, QIAN Hongyu, YU Peijiong, CHEN Yalun, ZHANG Qunli, LIU Yunfeng, YAO Jianhua. Comparative study between powder feeding and wire feeding laser additive repairing of V-groove with Inconel 718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 71-78. DOI: 10.12073/j.hjxb.20230307003 |
郭建亭. 高温合金在能源工业领域中的应用现状与发展[J]. 金属学报, 2010, 46(5): 513 − 527. doi: 10.3724/SP.J.1037.2009.00860
Guo Jianting. The current situation of application and development of superalloys in the fields of energy industry[J]. Acta Metallurgica Sinica, 2010, 46(5): 513 − 527. doi: 10.3724/SP.J.1037.2009.00860
|
师昌绪, 徐滨士, 张平, 等. 21世纪表面工程的发展趋势[J]. 中国表面工程, 2001(1): 2 − 7. doi: 10.3321/j.issn:1007-9289.2001.01.002
Shi Changxu, Xu Binshi, Zhang Ping, et al. Development of surface engineering in the 21st century[J]. China Surface Engineering, 2001(1): 2 − 7. doi: 10.3321/j.issn:1007-9289.2001.01.002
|
应雨龙, 李靖超, 庞景隆, 等. 基于热力模型的燃气轮机气路故障预测诊断研究综述[J]. 中国电机工程学报, 2019, 39(3): 731 − 743,952.
Ying Yulong, Li Jingchao, Pang Jinglong, et al. Review of gas turbine gas-path fault diagnosis and prognosis based on thermodynamic model[J]. Proceedings of the CSEE, 2019, 39(3): 731 − 743,952.
|
郭伟, 董丽虹, 王慧鹏, 等. 基于红外热像技术的涡轮叶片损伤评价研究进展[J]. 航空学报, 2016, 37(2): 429 − 436.
Guo Wei, Dong Lihong, Wang Huipeng, et al. Research progress of damage estimation for turbine blades based on infrared hermographic technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 429 − 436.
|
姚喆赫, 姚建华, 向巧. 激光再制造技术与应用发展研究[J]. 中国工程科学, 2020, 22(3): 63 − 70. doi: 10.15302/J-SSCAE-2020.03.011
Yao Zhehe, Yao Jianhua, Xiang Qiao. Development of laser remanufacturing technology and application[J]. Strategic Study of CAE, 2020, 22(3): 63 − 70. doi: 10.15302/J-SSCAE-2020.03.011
|
徐滨士. 中国再制造工程及其进展[J]. 中国表面工程, 2010, 23(2): 1 − 6. doi: 10.3969/j.issn.1007-9289.2010.02.001
Xu Binshi. Remanufacture engineering and its development in china[J]. China Surface Engineering, 2010, 23(2): 1 − 6. doi: 10.3969/j.issn.1007-9289.2010.02.001
|
宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29 − 39.
Song Jianli, Li Yongtang, Deng Qilin, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29 − 39.
|
Ya Wei, Pathiraj B, Yu Xinghua. From statistical analysis to process optimization during cladding using a Nd: YAG laser[J]. China Welding, 2022, 31(4): 7 − 22.
|
张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1 − 11.
Zhang Jinchao, Shi Shihong, Gong Yanqi, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1 − 11.
|
Liu Y A, Ding Y, Yang L J, et al. Research and progress of laser cladding on engineering alloys: A review[J]. Journal of Manufacturing Processes, 2021, 66: 341 − 363. doi: 10.1016/j.jmapro.2021.03.061
|
封慧, 李剑峰, 孙杰. 曲轴轴颈损伤表面的激光熔覆再制造修复[J]. 中国激光, 2014, 41(8): 86 − 91.
Feng Hui, Li Jianfeng, Sun Jie. Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J]. Chinese Journal of Lasers, 2014, 41(8): 86 − 91.
|
Sun Y W, Hao M Z. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser[J]. Optics and Lasers in Engineering, 2012, 50(7): 985 − 995. doi: 10.1016/j.optlaseng.2012.01.018
|
Lee H K. Effects of the cladding parameters on the deposition efficiency in pulsed Nd: YAG laser cladding[J]. Journal of Materials Processing Technology, 2008, 202(1-3): 321 − 327. doi: 10.1016/j.jmatprotec.2007.09.024
|
Onuike B, Bandyopadhyay A. Additive manufacturing in repair: Influence of processing parameters on properties of Inconel 718[J]. Materials Letters, 2019, 252: 256 − 259. doi: 10.1016/j.matlet.2019.05.114
|
卢朋辉, 刘建睿, 薛蕾, 等. 激光成形修复K418高温合金的显微组织与开裂行为[J]. 稀有金属材料与工程, 2012, 41(2): 315 − 319.
Lu Penghui, Liu Jianrui, Xue Lei, et al. Microstructure and cracking behavior of K418 superalloy by laser forming repairing[J]. Rare Metal Materials and Engineering, 2012, 41(2): 315 − 319.
|
卞宏友, 朱明昊, 李英, 等. 激光沉积修复GH536/GH738合金的组织及力学性能[J]. 中国有色金属学报, 2020, 30(3): 542 − 549.
Bian Hongyou, Zhu Minghao, Li Ying, et al. Microstructure and mechanical properties of laser deposition repair of GH536/GH738 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 542 − 549.
|
Brandl E, Michailov V, Viehweger B, et al. Deposition of Ti-6Al-4V using laser and wire, part I: Microstructural properties of single beads[J]. Surface & Coatings Technology, 2011, 206(6): 1120 − 1129.
|
尹研, 王匀, 许桢英, 等. 基于激光填丝熔覆的Cr12MoV模具修复及性能表征[J]. 表面技术, 2019, 48(11): 312 − 319.
Yin Yan, Wang Yun, Xu Zhenying, et al. Repair and characterization of Cr12MoV dies based on laser cladding by wire[J]. Surface Technology, 2019, 48(11): 312 − 319.
|
Zhang Y N, Cao X, Wanjara P. Microstructure and hardness of fiber laser deposited Inconel 718 using filler wire[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2569 − 2581. doi: 10.1007/s00170-013-5171-y
|
李凯斌, 李东, 刘东宇, 等. 光纤激光送丝熔覆修复工艺研究[J]. 中国激光, 2014, 41(11): 82 − 87.
Li Kaibin, Li Dong, Liu Dongyu, et al. Research of fiber laser cladding repairing process with wire feeding[J]. Chinese Journal of Lasers, 2014, 41(11): 82 − 87.
|
Abioye T E, Folkes J, Clare A T. A parametric study of Inconel 625 wire laser deposition[J]. Journal of Materials Processing Technology, 2013, 213(12): 2145 − 2151. doi: 10.1016/j.jmatprotec.2013.06.007
|
Demir A G. Micro laser metal wire deposition for additive manufacturing of thin-walled structures[J]. Optics and Lasers in Engineering, 2018, 100: 9 − 17. doi: 10.1016/j.optlaseng.2017.07.003
|
Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2016, 12: 178 − 188. doi: 10.1016/j.addma.2016.05.003
|
Wei H L, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science, 2021, 116: 113.
|
Li C, Yu Z B, Gao J X, et al. Numerical simulation and experimental study on the evolution of multi-field coupling in laser cladding process by disk lasers[J]. Welding in the World, 2019, 63(4): 925 − 945. doi: 10.1007/s40194-019-00725-0
|
Anderson M, Patwa R, Shin Y C. Laser-assisted machining of Inconel 718 with an economic analysis[J]. International Journal of Machine Tools & Manufacture, 2006, 46(14): 1879 − 1891.
|
Khorasani M, Ghasemi A, Leary M, et al. Numerical and analytical investigation on meltpool temperature of laser-based powder bed fusion of IN718[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121477. doi: 10.1016/j.ijheatmasstransfer.2021.121477
|
Jin K N, Yang Z Y, Chen P, et al. Dynamic solidification process during laser cladding of IN718: Multi-physics model, solute suppressed nucleation and microstructure evolution[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122907. doi: 10.1016/j.ijheatmasstransfer.2022.122907
|
黄辰阳, 陈嘉伟, 朱言言, 等. 激光定向能量沉积的粉末尺度多物理场数值模拟[J]. 力学学报, 2021, 53(12): 3240 − 3251. doi: 10.6052/0459-1879-21-420
Huang Chenyang, Chen Jiawei, Zhu Yanyan, et al. Powder scale multiphysics numerical modelling of laser directed energy deposition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3240 − 3251. doi: 10.6052/0459-1879-21-420
|
Lv H, Li X D, Li Z J, et al. Investigation on the columnar-to-equiaxed transition during laser cladding of IN718 alloy[J]. Journal of Manufacturing Processes, 2021, 67: 63 − 76. doi: 10.1016/j.jmapro.2021.04.016
|
刘振侠, 黄卫东, 万柏涛. 送粉式激光熔覆数值模型基本问题研究[J]. 中国激光, 2003, 30(6): 567 − 570. doi: 10.3321/j.issn:0258-7025.2003.06.023
Liu Zhenxia, Huang Weidong, Wan Baitao. Investigation of basic problems of the numerical model for powder feed laser cladding[J]. Chinese Journal of Lasers, 2003, 30(6): 567 − 570. doi: 10.3321/j.issn:0258-7025.2003.06.023
|
彭进, 李俐群, 林尚扬, 等. 激光液态填充焊的填材熔化与过渡稳定性[J]. 焊接学报, 2016, 37(7): 9 − 12.
Peng Jin, Li Liqun, Lin Shangyang, et al. Melting of filler metal and transfer stability in laser welding with pre-melting liquid filler[J]. Transactions of the China Welding Institution, 2016, 37(7): 9 − 12.
|
郭艳华, 戴国庆, 孙中刚, 等. 激光增材制造钛合金冶金组织特征及其调控方法研究进展[J]. 稀有金属材料与工程, 2022, 51(12): 4733 − 4744.
Guo Yanhua, Dai Guoqing, Sun Zhonggang, et al. Research progress of metallurgical structure characteristics and control methods of laser additive manufacturing titanium alloys[J]. Rare Metal Materials and Engineering, 2022, 51(12): 4733 − 4744.
|
Prasad A, Yuan L, Lee P, et al. Towards understanding grain nucleation under additive manufacturing solidification conditions[J]. Acta Materialia, 2020, 195: 392 − 403. doi: 10.1016/j.actamat.2020.05.012
|
Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718[J]. Additive Manufacturing, 2019, 30: 100877. doi: 10.1016/j.addma.2019.100877
|
Wang J, Lin X, Wang J T, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018, 768: 97 − 113. doi: 10.1016/j.jallcom.2018.07.235
|
魏雷, 林鑫, 王猛, 等. 激光立体成形中熔池凝固微观组织的元胞自动机模拟[J]. 物理学报, 2015, 64(1): 356 − 363.
Wei Lei, Lin Xin, Wang Meng, et al. Cellular automaton simulation of the molten pool of laser solid forming process[J]. Acta Physica Sinica, 2015, 64(1): 356 − 363.
|
张霜银, 林鑫, 陈静, 等. 工艺参数对激光快速成形TC4钛合金组织及成形质量的影响[J]. 稀有金属材料与工程, 2007, 255(10): 1839 − 1843. doi: 10.3321/j.issn:1002-185x.2007.10.033
Zhang Shuangyin, Lin Xin, Chen Jing, et al. Influence of processing parameter on the microstructure and forming characterizations of Ti-6Al-4V titanium alloy after laser rapid forming processing[J]. Rare Metal Materials and Engineering, 2007, 255(10): 1839 − 1843. doi: 10.3321/j.issn:1002-185x.2007.10.033
|
[1] | WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002 |
[2] | LI Yongqiang, Zhao He, Zhao Xihua, Jiang Wenhu, Zhang Weihua. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 29-32. |
[3] | XU Peiquan, ZHAO Xiaohui, HE Jianping, XU Guoxiang, YU Zhishui. Simulation on temperature field for Invar alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 37-40. |
[4] | MA Lin, YUAN Jinping, ZHANG Ping, ZHAO Junjun. Finite numerical simulation of temperature field in multi-pass laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 109-112. |
[5] | HU Jun-feng, YANG Jian-guo, FANG Hong-yuan, LI Guang-min, CHEN Wei. Temperature field of arc gouging and its influence on microstructures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 93-96. |
[6] | HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108. |
[7] | DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100. |
[8] | XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82. |
[9] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
[10] | Xu Qinghong, Guo Wei, Tian Xitang, Li Zhi. Numerical Simulation and Experiment of Temperature Field of Laser Cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (2): 58-62. |
1. |
王晨,雷正龙,宋文清,杨烁,李旭东. CoCrW与T800焊丝对DZ125高温合金表面激光熔覆耐磨层组织及性能的影响. 中国激光. 2025(04): 101-109 .
![]() |