Advanced Search
LI Xingran, LIU Zhenglin, JIANG Pengfei, NIE Minghao, ZHANG Zhihui. Interfacial characterization and properties of Ti6Al4V/NiTi laser additive manufactured functional gradient materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 27-33. DOI: 10.12073/j.hjxb.20230307001
Citation: LI Xingran, LIU Zhenglin, JIANG Pengfei, NIE Minghao, ZHANG Zhihui. Interfacial characterization and properties of Ti6Al4V/NiTi laser additive manufactured functional gradient materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 27-33. DOI: 10.12073/j.hjxb.20230307001

Interfacial characterization and properties of Ti6Al4V/NiTi laser additive manufactured functional gradient materials

More Information
  • Received Date: March 06, 2023
  • Available Online: September 06, 2023
  • Ti6Al4V/NiTi bionic function graded materials (BFGM) with dense and defect-free microstucture were prepared by laser additive manufacturing technology, and their interfacial microstructure, precipitation phase characteristics and mechanical properties were investigated. The results show that the Ti6Al4V/NiTi BFGM exhibits a non-uniform microstructure consisting of various grain morphologies and irregular and abnormal eutectic tissues, which are mainly titanium-rich and nickel-rich solid solutions and (Ti, Ni) compounds. As the content of NiTi alloy increases, the number and morphology of precipitated phases in different deposition layers change significantly. The microstructure of BFGM undergoes a series of transformations: α + β biphasic microstructure → columnar crystals + irregular eutectic structure → columnar crystals → equiaxial crystals → equiaxial crystals + columnar crystals. Phase aggregation, separation and segregation during solidification have significantly affected the mechanical properties of BFGM. The maximum microhardness of BFGM is 730.9 HV, which is attributed to the presence of brittle Ti2Ni phase. The tensile strength is 202 MPa and the elongation is 6.5%, which is significantly higher than that of the directly connected Ti6Al4V/NiTi heterogeneous material. The tensile fracture is characterized by brittle fracture with multiple secondary cracks extending along the crystal.
  • 董鹏, 梁晓康, 赵衍华, 等. 激光增材制造技术在航天构件整体化轻量化制造中的应用现状与展望[J]. 航天制造技术, 2018, 207(1): 7 − 11.

    Dong Peng, Liang Xiaokang, Zhao Yanhua, et al. Research status of laser additive manufacturing in integrity and lightweight[J]. Aerospace Manufacturing Technology, 2018, 207(1): 7 − 11.
    邹吉鹏, 陈健, 黄瑞生, 等. 厚板Ti6Al4V合金低真空激光焊接接头组织及力学性能[J]. 焊接学报, 2022, 43(8): 54 − 60.

    Zou Jipeng, Chen Jian, Huang Ruisheng, et al. Microstructure and mechanical properties of thick Ti6Al4V alloy welded joint by low vacuum laser welding[J]. Transactions of the China Welding Institution, 2022, 43(8): 54 − 60.
    黄雄荣, 邵若男, 朱淋淋. NiTi合金与增材制造—下一代航空航天轴承用材料[J]. 热处理, 2022, 37(6): 1 − 4.

    Huang Xiongrong, Shao Ruonan, Zhu Linlin. NiTi alloys and additive manufacturing—materials for next generation aerospace bearings[J]. Heat Treatment, 2022, 37(6): 1 − 4.
    Oliveira J P, Panton B, Zeng Z, et al. Laser joining of NiTi to Ti6Al4V using a niobium interlayer[J]. Acta Materialia, 2016, 105: 9 − 15.
    Cavaleiro A J, Ramos A S, Fernandes F M, et al. Follow-up structural evolution of Ni/Ti reactive nano and microlayers during diffusion bonding of NiTi to Ti6Al4V in a synchrotron beamline[J]. Journal of Materials Processing Technology, 2020, 275: 116354. doi: 10.1016/j.jmatprotec.2019.116354
    Deng H, Chen Y, Jia Y, et al. Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding[J]. Journal of Manufacturing Processes, 2021, 64: 379 − 391. doi: 10.1016/j.jmapro.2021.01.024
    Xie J, Chen Y, Yin L, et al. Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating[J]. Journal of Manufacturing Processes, 2021, 64: 473 − 480. doi: 10.1016/j.jmapro.2021.02.009
    Zhong Y, Xie J, Chen Y, et al. Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer[J]. Materials Letters, 2022, 306: 130896. doi: 10.1016/j.matlet.2021.130896
    Miranda R M, Assuncao E, Silva R J, et al. Fiber laser welding of NiTi to Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81: 1533 − 1538. doi: 10.1007/s00170-015-7307-8
    崔雪, 张松, 张春华, 等. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13 − 23.

    Cui Xue, Zhang Song, Zhang Chunhua, et al. Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials[J]. Journal of Materials Engineering, 2020, 48(9): 13 − 23.
    白玉超, 王迪, 李朝将. 激光定向能量沉积制造A131 EH36/AISI 1045双金属结构性能研究[J]. 中国激光, 2022, 49(14): 244 − 258.

    Bai Yuchao, Wang Di, Li Chaojiang. Research on A131 EH36/AISI 1045 bimetallic material fabricated by laser directed energy deposition[J]. Chinese Journal of Lasers, 2022, 49(14): 244 − 258.
    张敏, 王新宝, 王浩军, 等. 激光熔覆TC4/Inconel 625/316L不锈钢梯度材料组织与性能[J]. 焊接学报, 2023, 44(7): 16 − 23.

    Zhang Min, Wang Xinbao, Wang Haojun, et al. Microstructure and mechanical properties of laser cladding TC4/Inconel 625/316L stainless steel gradient material[J]. Transactions of the China Welding Institution, 2023, 44(7): 16 − 23.
    王佳杰, 宋晓国, 武鹏博, 等. 铝/钛异种金属激光/激光-CMT复合熔钎焊工艺及其组织与力学性能[J]. 焊接学报, 2023, 44(2): 54 − 60.

    Wang Jiajie, Song Xiaoguo, Wu Pengbo, et al. Process, microstructures and mechanical properties of Al/Ti dissimilar metals with laser/laser-CMT hybrid welding-brazing[J]. Transactions of the China Welding Institution, 2023, 44(2): 54 − 60.
    Lin X, Yue T M, Yang H O, et al. Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy[J]. Acta Materialia, 2006, 54(7): 1901 − 1915. doi: 10.1016/j.actamat.2005.12.019
    Stallard J C, Wheatcroft L, Booth S G, et al. Mechanical properties of cathode materials for lithium-ion batteries[J]. Joule, 2022, 6(5): 984 − 1007. doi: 10.1016/j.joule.2022.04.001
    Lu H, Wu L, Wei H, et al. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening[J]. Additive Manufacturing, 2022, 55: 102877. doi: 10.1016/j.addma.2022.102877
    Zheng D, Li R, Yuan T, et al. Microstructure and mechanical property of additively manufactured NiTi alloys: A comparison between selective laser melting and directed energy deposition[J]. Journal of Central South University, 2021, 28(4): 1028 − 1042. doi: 10.1007/s11771-021-4677-y
    Xu G, Wu L, Su Y, et al. Microstructure and mechanical properties of directed energy deposited 316L/Ti6Al4V functionally graded materials via constant/gradient power[J]. Materials Science & Engineering: A, 2022, 839: 142870.
  • Related Articles

    [1]QI Bojin, CAI Linwei. Review on Regualtion Means in Wire Arc Additive Manufacturing of Aluminum Alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240515002
    [2]LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003
    [3]ZHOU Zhaoyi, ZHANG Yanan, WANG Xiaofeng, LIU Jun. Weld surface defect detection based on improved two-dimensional principal component analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 70-76. DOI: 10.12073/j.hjxb.20210412001
    [4]LI Lei, YU Zhishui, ZHANG Peilei, ZHUANG Qiaoqiao, NIE Yunpeng. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 37-43. DOI: 10.12073/j.hjxb.2018390294
    [5]TANG Xiaohong, PANG Tao. Blowhole and alloy element burning loss of Al-Mg-Si 6082 alloy joint welded by argon arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 21-24.
    [6]NIU Ruifeng, LIN Binghua, WANG Yani, YANG Xingfei. Evaporation loss of Mg element in pulsed laser welding of 5A05 aluminum alloy and distribution of micro-hardness of welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 81-84.
    [7]LI Zhigang, ZHANG Hua, JIA Jianping. Plasma component calculation in underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 13-16.
    [8]WANG Xing-jun, HUANG Wen-rong, WEI Qi-long, SHEN Xian-Feng. Evaporation loss of Mg element in 5A06 aluminium alloy electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 61-64.
    [9]SUN Guang, HE Jian-ping, ZHANG Chun-bo, BAI Ri-hui, WU Yi-xiong. Parameters regulated multi slope waveform control gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 63-66.
    [10]Yang Hai-lan, Cai Yan, Chen Geng-jun, Wu Yi-xiong. Principal component analysis based artificial neural networks for arc welding quality control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 55-58,64.
  • Cited by

    Periodical cited type(1)

    1. 孙全喜,王伟,石智成,宋亚辉,李海豹,梁家煜,尹飞. 基于焊接角变形的辅具优化设计. 机械制造文摘(焊接分册). 2023(05): 42-45+48 .

    Other cited types(0)

Catalog

    Article views (255) PDF downloads (76) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return