Advanced Search
XING Songling, LI Chong, ZHOU Haipeng, CHEN Gaoqiang, SHI Qingyu. Structure and properties of friction stir welding joint of aluminum profile[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 124-128. DOI: 10.12073/j.hjxb.20221226003
Citation: XING Songling, LI Chong, ZHOU Haipeng, CHEN Gaoqiang, SHI Qingyu. Structure and properties of friction stir welding joint of aluminum profile[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 124-128. DOI: 10.12073/j.hjxb.20221226003

Structure and properties of friction stir welding joint of aluminum profile

More Information
  • Received Date: December 25, 2022
  • Available Online: August 21, 2023
  • Welding joints with partial thickened structures are usually adopted in the design of aluminum alloy profiles to offset the thinning of the joint caused by the downward pressure of the shoulder in friction stir welding. However, after welding of such aluminum profiles, it will take a lot of hours to manually polish the thickened structures. In order to reduce the amount of grinding, a new type of aluminum profile without thickened structure is designed in this paper, ensuring non-thinning-welding by changing the structure of shoulder. In-depth research is carried out from the perspective of weld forming quality, mechanical properties and organizational structure, and key process parameters such as welding downforce are determined. Finally, combined with the characteristics of extrusion tolerance and assembly tolerance in industrial production, the influence of joint misalignment on welding quality is studied, and a reasonable joint tolerance range is determined.

  • [1]
    Chen S, Zhou Y, Xue J, et al. High rotation speed friction stir welding for 2014 aluminum alloy thin sheets[J]. Journal of Materials Engineering and Performance, 2017, 26(3): 1337 − 1345. doi: 10.1007/s11665-017-2524-y
    [2]
    D’Urso G, Giardini C, Lorenzi S, et al. Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy[J]. Journal of Materials Processing Technology, 2014, 214(10): 2075 − 2084. doi: 10.1016/j.jmatprotec.2014.01.013
    [3]
    Lu X, Luan Y, Meng X, et al. Temperature distribution and mechanical properties of FSW medium thickness aluminum alloy 2219[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(11): 7229 − 7241.
    [4]
    Hattingh D G, Blignault C, Van Niekerk T I, et al. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool[J]. Journal of Materials Processing Technology, 2008, 203(1-3): 46 − 57. doi: 10.1016/j.jmatprotec.2007.10.028
    [5]
    张颖川, 马国栋, 代鹏, 等. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析[J]. 焊接学报, 2022, 43(6): 88 − 95. doi: 10.12073/j.hjxb.20210512001

    Zhang Yingchuan, Ma Guodong, Dai Peng, et al. Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(6): 88 − 95. doi: 10.12073/j.hjxb.20210512001
    [6]
    Hao Y, Liu W. Analysis on exceptional cryogenic mechanical properties of AA2219 alloy FSW joints in multi-scale[J]. Materials Science and Engineering:A, 2022, 850: 143489. doi: 10.1016/j.msea.2022.143489
    [7]
    张禹, 罗震, 谈辉, 等. 基于堆焊-电解的复合3D加工技术[J]. 焊接学报, 2015, 36(8): 39 − 42.

    Zhang Yu, Luo Zhen, Tan Hui, et al. Hybrid 3D processing technology based on build-up welding and electrolytic machining[J]. Transactions of the China Welding Institution, 2015, 36(8): 39 − 42.
    [8]
    Das D, Bag S, Pal S. A finite element model for surface and volumetric defects in the FSW process using a coupled Eulerian–Lagrangian approach[J]. Science and Technology of Welding and Joining, 2021, 26(5): 412 − 419. doi: 10.1080/13621718.2021.1931760
    [9]
    沈浩然, 杨天豪, 贾洪德, 等. 铝锂合金无减薄搅拌摩擦焊工艺研究[J]. 电焊机, 2018, 48(7): 41 − 45.

    Shen Haoran, Yang Tianhao, Jia Hongde, et al. Process study of aluminum-lithium alloy friction stir welding without thinning[J]. Electric Welding Machine, 2018, 48(7): 41 − 45.
    [10]
    柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 − 90.

    Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87 − 90.
    [11]
    柏久阳, 范成磊, 林三宝, 等. 基板散热作用对电弧堆焊成形中熔宽调控的影响[J]. 焊接学报, 2016, 37(3): 115 − 119.

    Bai Jiuyang, Fan Chenglei, Lin Sanbao, et al. Effects of baseplate's heat sink on the control strategies of weld width during GTA-additive manufacturing[J]. Transactions of the China Welding Institution, 2016, 37(3): 115 − 119.
    [12]
    DIN EN 573-3, Aluminium and aluminium alloys-Chemical composition and form of wrought products-Part 3: Chemical composition and form of products (includes Amendment A1: 2022)[S]. European standards, 2022.
    [13]
    DIN EN 755-2, Aluminium and aluminium alloys-Extruded rod/bar, tube and profiles-Part 2: Mechanical properties[S]. European standards, 2016.
    [14]
    GB/T 2651-2008, 焊接接头拉伸试验方法[S]. 全国焊接标准化技术委员会, 2008.

    GB/T 2651-2008, Tensile test method on welded joints[S]. SAC/TC55, 2008.
    [15]
    Karthikeyan S, Mohan K, Arivazhagan S. Multi objective optimization of FSW process parameters to enhance the tensile strength and hardness of AA7068 welded joints[J]. Surface Topography: Metrology and Properties, 2021, 9(4): 045010. doi: 10.1088/2051-672X/ac0e7d
  • Related Articles

    [1]LI Chong, TIAN Yalin, QI Zhenguo, WANG Wei, YANG Yanlong, WANG Yijing. Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 102-107. DOI: 10.12073/j.hjxb.20220104001
    [2]ZHANG Yingchuan, MA Guodong, DAI Peng, WANG Jingshui, JIN Wei. Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 88-95. DOI: 10.12073/j.hjxb.20210512001
    [3]GAO Yihan, GUO Xuming, MO Chunli. Parameters optimization and character analysis of the zero-weld-thinning friction stir welding process of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 141-147. DOI: 10.12073/j.hjxb.2019400115
    [4]ZHANG Jing, FENG Xiaosong, XU Hui, GAO Jiashuang. Investigation on laser coaxially assisted friction stir welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 102-105,110. DOI: 10.12073/j.hjxb.2018390184
    [5]MAO Yuqing, KE Liming, HUANG Bin, LIU Fencheng. Effect of shoulder profile on plastic flow of weld metal in aluminum alloys friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 27-32.
    [6]WANG Min, ZHANG Huijie, ZHANG Xiao, YU Tao, YANG Guangxin. A novel zero-weld-thinning friction sir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 37-40.
    [7]ZHOU Guannan, SHEN Yifu, LI Bo, YAO Lei, WU Xiaowei. A cross-friction stir spot welding process of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 71-74.
    [8]LI Da, SUN Minghui, CUI Zhanquan. Effect of parameters on friction stir welding joint of 7075Al and AZ31BMg[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 97-100.
    [9]WANG Wei, SHI Qingyu, LI Ting, LI Hongke. Mechanical properties and welding parameters window of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 77-80.
    [10]Guan Qiao, Guo Deluen, Li Congqing. LOW STRESS NON-DISTORTION(LSND) WELDING——A NEW TECHNIQUE FOR THIN MATERIALS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (4): 231-237.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (141) PDF downloads (37) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return