Citation: | WANG Xingxing, TIAN Jiahao, LI Shuai, FANG Naiwen, HE Peng, NI Zenglei, WEN Guodong. Research progress on advanced joining technology of high-nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 118-128. DOI: 10.12073/j.hjxb.20221025001 |
安瑞金, 赵琳, 田志凌, 等. 医疗器械用高氮不锈钢薄板激光焊接接头的组织与性能[J]. 应用激光, 2007, 27(6): 41 − 44.
An Ruijin, Zhao Lin, Tian Zhiling, et al. Microstructure and mechanical properties of welded joint of high nitrogen austenite stainless steel thin plates for medical devices[J]. Applied Laser, 2007, 27(6): 41 − 44.
|
Svyazhin A, Kaputkina L, Smarygina I, et al. Nitrogen steels and high-nitrogen steels: industrial technologies and properties[J]. Steel Research International, 2022, 93(9): 2200160.
|
Radice S, Impergre A, Fischer A, et al. Corrosion resistance of the nickel‐free high‐nitrogen steel FeCrMnMoN0.9 under simulated inflammatory conditions[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2021, 109(6): 902 − 910. doi: 10.1002/jbm.b.34754
|
Li S, Zhang C S, Lu J P, et al. A review of progress on high nitrogen austenitic stainless-steel research[J]. Materials Express, 2021, 11(12): 1901 − 1925. doi: 10.1166/mex.2021.2109
|
Li M, Wu H, Wang Y, et al. Immobilization of heparin/poly-L-lysine microspheres on medical grade high nitrogen nickel-free austenitic stainless steel surface to improve the biocompatibility and suppress thrombosis[J]. Materials Science and Engineering:C, 2017, 73: 198 − 205. doi: 10.1016/j.msec.2016.12.070
|
Lang Y P, Qu H P, Chen H T, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J]. Journal of Iron and Steel Research International, 2015, 22(2): 91 − 98. doi: 10.1016/S1006-706X(15)60015-2
|
Li J, Li H, Peng W, et al. Effect of simulated welding thermal cycles on microstructure and mechanical properties of coarse-grain heat-affected zone of high nitrogen austenitic stainless steel[J]. Materials Characterization, 2019, 149: 206 − 217. doi: 10.1016/j.matchar.2019.01.030
|
Qin Y, Li J, Herbig M. Microstructural origin of the outstanding durability of the high nitrogen bearing steel X30CrMoN15-1[J]. Materials Characterization, 2020, 159: 110049. doi: 10.1016/j.matchar.2019.110049
|
Zhao Y, Sun Y, Li X, et al. In-situ observation of δ ↔ γ phase transformations in duplex stainless steel containing different nitrogen contents[J]. ISIJ International, 2017, 57(9): 1637 − 1644. doi: 10.2355/isijinternational.ISIJINT-2017-125
|
汤旭炜. Mn18Cr18N护环钢工艺的基础研究[D]. 北京: 北京科技大学, 2017.
Tang Xuwei. Fundamental study on process of Mn18Cr18N retaining ring steel[D]. Beijing: University of Science and Technology Beijing, 2017.
|
孙世成. 高氮无镍奥氏体不锈钢的微观结构和力学性能研究[D]. 吉林: 吉林大学, 2014.
Sun Shicheng. Microstructure and mechanical properties of high nitrogen nickel-free austenitic stainless steel[D]. Jilin: Jilin University, 2014.
|
Tan H, Jiang Y, Deng B, et al. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750[J]. Materials Characterization, 2009, 60(9): 1049 − 1054. doi: 10.1016/j.matchar.2009.04.009
|
Ma Z H, Chen D G, Liu H W, et al. Microstructure and mechanical properties of welding joints of high nitrogen steel by hybrid laser-arc welding[J]. Applied Mechanics and Materials, 2014, 496: 444 − 447.
|
Wang L, Li Y, Ding J, et al. Problems in welding of high nitrogen steel: A Review[J]. Metals, 2022, 12(8): 1273.
|
张志强, 荆洪阳, 徐连勇, 等. 铁素体/奥氏体双相不锈钢焊接接头组织和性能的研究进展[J]. 材料热处理学报, 2020, 41(5): 13 − 27.
Zhang Zhiqiang, Jing Hongyang, Xu Lianyong, et al. Research progress on microstructure and properties of welded joint of ferrite/austenite duplex stainless steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 13 − 27.
|
Zhao L, Tian Z L, Peng Y, et al. Control of nitrogen content and porosity in gas tungsten arc welding of high nitrogen steel[J]. Science and Technology of Welding and Joining, 2009, 14(1): 87 − 92. doi: 10.1179/136217108X343939
|
Lu S, Dong W, Li D, et al. Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen[J]. Computational Materials Science, 2009, 45(2): 327 − 335. doi: 10.1016/j.commatsci.2008.10.010
|
Hosseini V A, Wessman S, Hurtig K, et al. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel[J]. Materials & Design, 2016, 98: 88 − 97.
|
周杰, 张明渝, 李志洋, 等. 高氮不锈钢与675高强钢焊接接头微观组织与力学性能[J]. 焊接, 2022(2): 6 − 10.
Zhou Jie, Zhang Mingyu, Li Zhiyang, et al. Microstructure and mechanical properties of welded joint between high nitrogen stainless steel and 675 high strength steel[J]. Welding & Joining, 2022(2): 6 − 10.
|
杨武林, 陈东高, 王有祁, 等. 中厚度高氮钢双丝MIG焊接头组织和性能研究[J]. 兵器材料科学与工程, 2013, 36(5): 100 − 102.
Yang Wulin, Chen Donggao, Wang Youqi, et al. Microstructure and mechanical properties of MIG welded joint of mid-thickness high nitrogen steel[J]. Ordnance Material Science and Engineering, 2013, 36(5): 100 − 102.
|
Li J G, Li H, Liang Y, et al. The microstructure and mechanical properties of multi-strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel[J]. Materials, 2019, 12(18): 2944. doi: 10.3390/ma12182944
|
杜挽生, 彭云, 赵琳, 等. 高氮奥氏体不锈钢MIG焊接头的组织和性能[J]. 焊接, 2008(10): 25 − 29.
Du Wansheng, Peng Yun, Zhao Lin, et al. Microstructure and mechanical properties of MIG welded joint of high nitrogen austenite stainless steel[J]. Welding & Joining, 2008(10): 25 − 29.
|
明珠, 王克鸿, 张迎迎, 等. 高氮奥氏体钢与603钢焊接结构疲劳性能的对比研究[J]. 焊接技术, 2016, 45(11): 28 − 30.
Ming Zhu, Wang Kehong, Zhang Yingying, et al. Comparative study on fatigue properties of welded structures of high nitrogen austenitic steel and 603 steel[J]. Welding Technology, 2016, 45(11): 28 − 30.
|
冯兆龙. 高氮奥氏体不锈钢仰焊焊接接头组织与性能研究[J]. 焊接, 2010(12): 43 − 45.
Feng Zhaolong. Microstructure and properties of high nitrogen stainless steel welded joint by upward welding[J]. Welding & Joining, 2010(12): 43 − 45.
|
Zhao L, Tian Z L, Peng Y, et al. Porosity and nitrogen content of weld metal in laser welding of high nitrogen austenitic stainless steel[J]. ISIJ international, 2007, 47(12): 1772 − 1775. doi: 10.2355/isijinternational.47.1772
|
李永杰. 气孔和裂纹对高氮钢光纤激光焊接接头力学性能的影响[J]. 应用激光, 2017, 37(5): 681 − 686.
Li Yongjie. Effects of air holes and cracks on the mechanical properties of high nitrogen steel fiber laser welded joints[J]. Applied Laser, 2017, 37(5): 681 − 686.
|
Bai D, Liu F, Zhang H, et al. Corrosion behavior and passivation protection mechanism on different zone of high-nitrogen steel weld[J]. Materials Letters, 2021, 10(1): 300.
|
Ning J, Na S J, Wang C H, et al. A comparison of laser-metal inert gas hybrid welding and metal inert gas welding of high-nitrogen austenitic stainless steel[J]. Journal of Materials Research and Technology, 2021, 13: 1841 − 1854. doi: 10.1016/j.jmrt.2021.05.113
|
方乃文, 黄瑞生, 闫德俊, 等. 低镍含氮奥氏体不锈钢激光-电弧焊电弧特性及组织性能[J]. 焊接学报, 2021, 42(1): 70 − 75.
Fang Naiwen, Huang Ruisheng, Yan Dejun, et al. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. Transactions of the China Welding Institution, 2021, 42(1): 70 − 75.
|
王健, 刘天生. 高氮钢与铝板的爆炸焊接可行性探究[J]. 兵器材料科学与工程, 2016, 39(2): 98 − 102.
Wang Jian, Liu Tiansheng. Explosion welding feasibility of high nitrogen steel and aluminum plate[J]. Ordnance Material Science and Engineering, 2016, 39(2): 98 − 102.
|
Liu Y, Li C, Hu X, et al. Explosive welding of copper to high nitrogen austenitic stainless steel[J]. Metals, 2019, 9(3): 339. doi: 10.3390/met9030339
|
Li H B, Jiang Z H, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel[J]. Materials & Design, 2015, 84: 291 − 299.
|
Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel[J]. Materials & Design, 2016, 110: 802 − 810.
|
Zhang H, Wang D, Xue P, et al. Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling[J]. Journal of Materials Science & Technology, 2018, 34(11): 2183 − 2188.
|
Yuan X J, Kang C Y, Kim M B. Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni-Si-B filler metal[J]. Materials Characterization, 2009, 60(9): 923 − 931. doi: 10.1016/j.matchar.2009.03.004
|
Zhu W W, Zhang H, Guo C H, et al. Wetting and brazing characteristic of high nitrogen austenitic stainless steel and 316L austenitic stainless steel by Ag-Cu filler[J]. Vacuum, 2019, 166: 97 − 106. doi: 10.1016/j.vacuum.2019.04.064
|
Qiang W, Wang K H. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 250: 169 − 181. doi: 10.1016/j.jmatprotec.2017.07.021
|
Mohammed R, Reddy G M, Rao K S. Effect of filler wire composition on microstructure and pitting corrosion of nickel free high nitrogen stainless steel GTA Welds[J]. Transactions of the Indian Institute of Metals, 2016, 69(10): 1919 − 1927. doi: 10.1007/s12666-016-0851-6
|
Liu Z, Fan C, Ming Z, et al. Optimization of shielding gas composition in high nitrogen stainless steel gas metal arc welding[J]. Journal of Manufacturing Processes, 2020, 58: 19 − 29. doi: 10.1016/j.jmapro.2020.08.001
|
方乃文, 黄瑞生, 杨义成, 等. 填充金属对08Cr19MnNi3Cu2N低镍含氮奥氏体不锈钢MAG焊接头组织性能的影响[J]. 机械制造文摘(焊接分册), 2019, 6: 20 − 25.
Fang Naiwen, Huang Ruisheng, Yang Yicheng, et al. Effect of filler metal on microstructure and properties of welded joint for 08Cr19MnNi3Cu2N austenitic stainless steel with low nickel and nitrogen[J]. Welding Digest of Machinery Manufacturing, 2019, 6: 20 − 25.
|
明珠, 王克鸿, 王伟, 等. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104 − 108.
Ming Zhu, Wang Kehong, Wang Wei, et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 104 − 108.
|
Keskitalo M, Mäntyjärvi K, Sundqvist J, et al. Laser welding of duplex stainless steel with nitrogen as shielding gas[J]. Journal of Materials Processing Technology, 2015, 216: 381 − 384. doi: 10.1016/j.jmatprotec.2014.10.004
|
Lai R, Cai Y, Wu Y, et al. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding[J]. Journal of Materials Processing Technology, 2016, 231: 397 − 405. doi: 10.1016/j.jmatprotec.2016.01.016
|
冯志鹏, 刘凤德, 刘双宇, 等. 激光功率对高氮钢激光焊接焊缝组织和性能的影响[J]. 应用激光, 2015, 35(5): 564 − 568.
Feng Zhipeng, Liu Fengde, Liu Shuangyu, et al. Influence of laser power on microstructure and properties of high nitrogen stainless steel with laser welding[J]. Applied Laser, 2015, 35(5): 564 − 568.
|
Berezovskaya V V, Berezovskiy A V, Hilfi D H. Laser welded joints of high-nitrogen austenitic steels: Microstructure and Properties[J]. Solid State Phenomena, 2018, 284: 344 − 350. doi: 10.4028/www.scientific.net/SSP.284.344
|
Cui B, Luo T, Feng M. Effect of nitrogen content on the microstructure and properties of the laser-arc hybrid welding joint of high nitrogen steel[J]. Optik, 2021, 243: 167478. doi: 10.1016/j.ijleo.2021.167478
|
Li X, Bai D, Wang Y, et al. High-nitrogen steel laser-arc hybrid welding in vibration condition[J]. Materials Science and Technology, 2019, 36(4): 434 − 442.
|
Bai D, Yang Z, Chen M, et al. Study on corrosion mechanism of high-nitrogen steel laser-arc hybrid welded joints[J]. Materials Research Express, 2020, 7(10): 106531. doi: 10.1088/2053-1591/abc372
|
Li H, Yang S, Zhang S, et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654[J]. Materials & Design, 2017, 118: 207 − 217.
|
Zhang H, Xue P, Wang D, et al. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. Journal of Materials Science & Technology, 2019, 35(7): 1278 − 1283.
|
Du D, Fu R, Li Y, et al. Gradient characteristics and strength matching in friction stir welded joints of Fe-18Cr-16Mn-2Mo-0.85N austenitic stainless steel[J]. Materials Science and Engineering:A, 2014, 616: 246 − 251. doi: 10.1016/j.msea.2014.08.012
|
Zhu W, Jiang H, Zhang H, et al. Microstructure and strength of high nitrogen steel joints brazed with Ni-Cr-B-Si filler[J]. Materials Science and Technology, 2017, 34(8): 926 − 833.
|
Wang X X, Li Z F, Gao D, et al. Microstructure and joint properties of high-nitrogen steel brazed by AgCuNi filler metal[J]. International Journal of Modern Physics B, 2022, 36(5): 2250045. doi: 10.1142/S021797922250045X
|
Dong F Y, Zhang P, Pang J C, et al. Microstructure and mechanical properties of high-nitrogen austenitic stainless steels subjected to Equal-Channel angular pressing[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 140 − 149. doi: 10.1007/s40195-016-0370-9
|
Li J Y, Liu H N, Huang P W. Effects of pre-precipitation of Cr2N on microstructures and properties of high nitrogen stainless steel[J]. Journal of Central South University, 2012, 19(5): 1189 − 1195. doi: 10.1007/s11771-012-1127-x
|
马良超, 马冰, 王大锋, 等. 保护气配比对高氮钢焊丝接头组织性能的影响[J]. 兵器材料科学与工程, 2021, 44(1): 59 − 62.
Ma Liangchao, Ma Bing, Wang Dafeng, et al. Effects of shielding gas ratio on microstructure and properties of high nitrogen steel welded joint[J]. Ordnance Material Science and Engineering, 2021, 44(1): 59 − 62.
|
Liu Z, Fan C L, Ming Z, et al. Gas metal arc welding of high nitrogen stainless steel with Ar-N2-O2 ternary shielding gas[J]. Defence Technology, 2021, 17(3): 923 − 931. doi: 10.1016/j.dt.2020.05.021
|
Ma Y, Lü X, Fang N, et al. Research on microstructure evolution of deposited metal of low nickel high nitrogen austenitic stainless steel[J]. Advances in Materials Science and Engineering, 2021, 2021: 7655423.
|
Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel[J]. ISIJ International, 2002, 42(12): 1334 − 1343. doi: 10.2355/isijinternational.42.1334
|
Bo C, Hong Z, Fengde L. Effects of shielding gas composition on the welding stability, microstructure and mechanical properties in laser-arc hybrid welding of high nitrogen steel[J]. Materials Research Express, 2018, 5(9): 096513. doi: 10.1088/2053-1591/aad6c5
|
Kumar N, Arora N, Goel S K, et al. A comparative study of microstructure and mechanical properties of 21-4-N steel weld joints using different filler materials[J]. Materials Today:Proceedings, 2018, 5(9): 17089 − 17096. doi: 10.1016/j.matpr.2018.04.116
|
Wang J Y, Qi T, Zhong C L, et al. Study on seam nitrogen behavior of high nitrogen steel hybrid welding[J]. Optik, 2021, 242: 167026. doi: 10.1016/j.ijleo.2021.167026
|
Liu Z, Fan C, Chen C, et al. Design and evaluation of nitrogen-rich welding wires for high nitrogen stainless steel[J]. Journal of Materials Processing Technology, 2021, 288: 116885. doi: 10.1016/j.jmatprotec.2020.116885
|
荆皓, 王克鸿, 强伟, 等. 氮含量对高氮钢PMIG焊接头组织和性能的影响[J]. 焊接学报, 2017, 38(4): 95 − 98.
Jing Hao, Wang Kehong, Qiang Wei, et al. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. Transactions of the China Welding Institution, 2017, 38(4): 95 − 98.
|
明珠, 王克鸿, 王伟, 等. 焊丝成分对高氮不锈钢GMAW稳定性及熔滴过渡行为的影响[J]. 焊接学报, 2018, 39(7): 24 − 28.
Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. Transactions of the China Welding Institution, 2018, 39(7): 24 − 28.
|
张旭昀, 郑冰洁, 郭斌, 等. 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究[J]. 材料导报, 2017, 31(18): 146 − 149.
Zhang Xuyun, Zheng Bingjie, Guo Bin, et al. Theoretical study on bonding characteristics of Cr, Mn, Mo and N in high nitrogen austenitic stainless steel[J]. Materials Review, 2017, 31(18): 146 − 149.
|
Liu Z, Fan C, Chen C, et al. Optimization of the microstructure and mechanical properties of the high nitrogen stainless steel weld by adding nitrides to the molten pool[J]. Journal of Manufacturing Processes, 2020, 49: 355 − 364. doi: 10.1016/j.jmapro.2019.12.017
|
Vashishtha H, Taiwade R V, Sharma S, et al. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels[J]. Journal of Manufacturing Processes, 2017, 25: 49 − 59. doi: 10.1016/j.jmapro.2016.10.008
|
Moon J, Lee T H, Park S J, et al. Tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone of metastable high-nitrogen Fe-18Cr-10Mn-N stainless steel[J]. Metallurgical and Materials Transactions A, 2013, 44(7): 3069 − 3076. doi: 10.1007/s11661-013-1682-2
|
Li J, Li H, Liang Y, et al. Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints[J]. Corrosion Science, 2020, 166: 108445. doi: 10.1016/j.corsci.2020.108445
|
明珠, 王克鸿, 王伟, 等. 冷却速率对高氮钢焊缝组织和性能的影响[J]. 焊接学报, 2019, 40(10): 31 − 35.
Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. Transactions of the China Welding Institution, 2019, 40(10): 31 − 35.
|
徐娟娟, 王克鸿, 彭勇, 等. 热输入对高氮钢光纤激光焊接接头气孔及组织性能的影响[J]. 造船技术, 2016(1): 55 − 59,79. doi: 10.3969/j.issn.1000-3878.2016.01.013
Xu Juanjuan, Wang Kehong, Peng Yong, et al. Effect of heat input on stomatal resistance and mechanical properties of high nitrogen steel plate laser welding joint[J]. Marine Technology, 2016(1): 55 − 59,79. doi: 10.3969/j.issn.1000-3878.2016.01.013
|
Liu F D, Li X R, Li Y Z, et al. Study of the microstructure and impact properties of the heat-affected zone of high nitrogen steel for laser-arc hybrid welding[J]. Materials Research Express, 2019, 6(7): 076505. doi: 10.1088/2053-1591/ab11f7
|
王力锋, 刘凤德, 刘薇娜, 等. 高氮钢激光-电弧复合焊接接头组织与力学性能研究[C]// 甘肃: 第二十次全国焊接学术会议论文集, 甘肃, 2015: 1-5.
Wang Lifeng, Liu Fengde, Liu Weina, et al. Microstructure and mechanical properties of laser-arc hybrid welded joints of high nitrogen steel [C]. Proceedings of the 20th National Welding Academic Conference, Gansu, 2015: 1-5.
|
Vashishtha H, Taiwade R V, Sharma S. Effect of electrodes and post weld solution annealing treatment on microstructures, mechanical properties and corrosion resistance of dissimilar high nitrogen austenitic and conventional austenitic stainless steel weldments[J]. Materials Transactions, 2017, 58(2): 182 − 185. doi: 10.2320/matertrans.M2016175
|
Kumar N, Arora N, Goel S K. Study on metallurgical and mechanical aspects of GMA welded nitronic steel under the influence of weld quenching[J]. Journal of Manufacturing Processes, 2020, 56: 116 − 130. doi: 10.1016/j.jmapro.2020.04.050
|
Fang N W, Huang R S, Wang X X, et al. Effect of shielding gas on the microstructure and properties of laser-MAG hybrid welded joint for nickel-saving stainless steel[J]. Advances in Materials Science and Engineering, 2022, 2022: 9330521.
|
Kumar Rajak D, Pagar D D, Menezes P L, et al. Friction-based welding processes: friction welding and friction stir welding[J]. Journal of Adhesion Science and Technology, 2020, 34(24): 2613 − 2637. doi: 10.1080/01694243.2020.1780716
|
Miyano Y, Fujii H, Sun Y, et al. Mechanical properties of friction stir butt welds of high nitrogen-containing austenitic stainless steel[J]. Materials Science and Engineering:A, 2011, 528(6): 2917 − 2921. doi: 10.1016/j.msea.2010.12.071
|
Wang D, Ni D R, Xiao B L, et al. Microstructural evolution and mechanical properties of friction stir welded joint of Fe-Cr-Mn-Mo-N austenite stainless steel[J]. Materials & Design, 2014, 64: 355 − 359.
|
Hajian M, Abdollah-Zadeh A, Rezaei-Nejad S, et al. Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel[J]. Materials & Design, 2015, 67: 82 − 94.
|
杜东旭. 高氮钢搅拌摩擦焊接接头组织与性能相关性研究[D]. 秦皇岛: 燕山大学, 2014.
Du Dongxu. Investigation on correlation between microstructure and property of friction stir welding joint of high nitrogen steel[D]. Qinhuangdao: Yanshan University, 2014.
|
李艺君, 杜东旭, 付瑞东. 焊后热处理对高氮奥氏体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 机械工程学报, 2015, 51(22): 47 − 53. doi: 10.3901/JME.2015.22.047
Li Yijun, Du Dongxu, Fu Ruidong. Effect of post-welded heat treatment on the microstructures and mechanical properties of friction stir welded joint of high-nitrogen austenitic stainless steel[J]. Journal of Mechanical Engineering, 2015, 51(22): 47 − 53. doi: 10.3901/JME.2015.22.047
|
Zhang H, Zhu W, Zhang T, et al. Effect of brazing temperature on microstructure and mechanical property of high nitrogen austenitic stainless steel joints brazed with Ni-Cr-P filler[J]. ISIJ International, 2019, 59(2): 300 − 304. doi: 10.2355/isijinternational.ISIJINT-2018-442
|
任伊宾, 王青川, 邵传伟, 等. 一种血管支架用高氮奥氏体不锈钢及其应用: 中国, 201310150983.2[P]. 2015-06-10.
Ren Yibin, Wang Qingchuan, Shao Chuanwei, et al. A kind of high nitrogen austenitic stainless steel for vascular stent and its application: CN patent, 201310150983.2[P]. 2015-06-10.
|
李文, 白树功. 高安全性无镍金属药物洗脱血管支架及其制造方法: 中国, 202010364623.2[P]. 2020-10-30.
Li Wen, Bai Shugong. High safety nickel free metal drug eluting vascular stent and its manufacturing method: CN patent, 202010364623.2[P]. 2020-10-30.
|
屈华鹏, 郎宇平, 陈海涛. 无磁钻铤用高氮不锈钢的研究和发展[J]. 热加工工艺, 2014, 43(24): 14 − 18.
Qu Huapeng, Lang Yuping, Chen Haitao. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14 − 18.
|
屈华鹏, 郎宇平, 陈海涛. 一种无磁钻铤用高氮奥氏体不锈钢及其制造方法: 中国, 201711244575.8[P]. 2018-04-13.
Qu Huapeng, Lang Yuping, Chen Haitao. A king of high nitrogen austenitic stainless steel for non-magnetic drill collars and the manufacturing method of it: CN patent, 201711244575.8[P]. 2018-04-13.
|
秦国梁, 杨帆, 李长安. 高氮奥氏体不锈钢和无磁钻铤的轴向摩擦焊接工艺方法: 中国, 201810746344.5[P]. 2018-11-30.
Qin Guoliang, Yang Fan, Li Changan. Axial friction welding process of high nitrogen austenitic stainless steel and non-magnetic drill collar: CN patent, 201810746344.5[P]. 2018-11-30.
|
王宇, 彭翔飞, 李俊, 等. 高氮奥氏体不锈钢强韧化及抗弹性能研究进展[J]. 钢铁, 2022, 57(1): 28 − 38. doi: 10.13228/j.boyuan.issn0449-749x.20210373
Wang Yu, Peng Xiangfei, Li Jun, et al. Research progress on strengthening mechanism and ballistic performance of high nitrogen austenitic stainless steels[J]. Iron Steel, 2022, 57(1): 28 − 38. doi: 10.13228/j.boyuan.issn0449-749x.20210373
|
王红鸿, 孟庆润. 一种适用于高氮装甲钢焊接的高氮金属粉芯药芯焊丝: 中国, 201910521297.9[P]. 2019-08-30.
Wang Honghong, Meng Qingrun. A high nitrogen metal powder cored flux cored wire for welding high nitrogen armor steel: CN patent, 201910521297.9[P]. 2019-08-30.
|
[1] | MING Zhu, WANG Kehong, WANG Wei, WANG Youqi. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259 |
[2] | MING Zhu, WANG Kehong, WANG Wei, FAN Chenglei, WANG Youqi. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 104-108. DOI: 10.12073/j.hjxb.2019400021 |
[3] | JING Hao, WANG Kehong, QIANG Wei, KONG Jian. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 95-98. DOI: 10.12073/j.hjxb.20170422 |
[4] | CUI Lei, YANG Xinqi, WANG Dongpo, CAO Jun. Underwater friction taper plug welding process and mechanical properties of joints for DH36 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 75-79. |
[5] | ZHU Hai, ZHENG Haiyang, GUO Yarding. Effects of heat treatment technology on mechanical properties of friction welding drill rod[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 93-96. |
[6] | ZHAO Lin, TIAN Zhiling, PENG Yun, XU Lianghong, LI Ran. Laser welding of high nitrogen steel 1Cr22Mn16N Ⅲ.Microstructure and mechanical properties of welding heat-affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 26-30. |
[7] | ZHAO Lin, TIAN Zhiling, PENG Yun, ZHAO Xiaobing, QI Yanchang. Laser welding of high nitrogen steel 1Cr22Mn16N-Ⅱ.microstructure and mechanical properties of weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 80-82,86. |
[8] | HAO Guo-jian, LIN Zhi, LIN Jun-pin, WANG Yan-li, CHEN Guo-liang. Analysis of microstructure and mechanical properties of Be/Al weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 89-92. |
[9] | Sun Daqian, Zhou Zhenfeng, Ren Zhenan. Microstructure and Mechanical Properties of Austempered Ductile Iron Welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 202-207. |
[10] | Shi Yaowu, Zhou Ningning, Zhang Xinping, Tang Wei, Lei Yongping. Microshear test and its evaluation to mechanical properties of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 235-240. |
1. |
贾静焕,詹中伟,孙志华,赵明亮,盛伟. 国产新型高氮不锈钢耐腐蚀性能研究. 电镀与涂饰. 2024(02): 84-90 .
![]() | |
2. |
程中光,章晓勇,贾冬生,王克鸿,王敬,孙志磊. 基于PTA工艺的高氮钢熔滴过渡特性. 焊接学报. 2024(05): 56-63 .
![]() |