Advanced Search
MING Zhu, WANG Kehong, WANG Wei, WANG Youqi. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259
Citation: MING Zhu, WANG Kehong, WANG Wei, WANG Youqi. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259

Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal

More Information
  • Received Date: June 03, 2018
  • Available Online: July 12, 2020
  • The micro-structure and mechanical properties of high nitrogen stainless steel weld metals prepared under air and water cooling conditions were investigated and the effect of cooling rate on the micro-structure and mechanical properties of high nitrogen stainless steel weld metal was discussed in this study. The results indicated that an increase in the cooling rate would significantly increase the nitrogen content in the high nitrogen stainless steel weld metal, especially for the one with nitrogen content of 0.85%. Increasing cooling rate could result in the increase in the tensile strength of high nitrogen stainless steel weld metal, which was found to be strongly dependent on the nitrogen content in high nitrogen stainless steel weld wire. For the lower nitrogen content of high nitrogen austenitic stainless steel welding wire, increasing cooling rate could significantly improve the tensile strength of weld metal, but had no influence on the one of weld metal when the nitrogen content beyond 0.58% in the welding wire. The tensile strength of the joint reached 850 MPa finally.
  • Speidel M O. Nitrogen containing austenitic stainless steels[J]. Materialwissenschaft und Werkstofftechnik, 2006, 37(10): 875 − 880.
    Qi X, Mao H, Yang Y. Corrosion behavior of nitrogen alloyed martensitic stainless steel in chloride containing solutions[J]. Corrosion Science, 2017, 120: 90 − 98. doi: 10.1016/j.corsci.2017.02.027
    Reyes-Hernández D, Manzano-Ramírez A, Encinas A, et al. Addition of nitrogen to GTAW welding duplex steel 2205 and its effect on fatigue strength and corrosion[J]. Fuel, 2017, 198: 165 − 169. doi: 10.1016/j.fuel.2017.01.008
    Li M, Wu H, Wang Y, et al. Immobilization of heparin/poly-l-lysine microspheres on medical grade high nitrogen nickel-free austenitic stainless steel surface to improve the biocompatibility and suppress thrombosis[J]. Materials Science and Engineering: C, 2017, 73: 198 − 205. doi: 10.1016/j.msec.2016.12.070
    Qiang W, Wang K. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 250: 169 − 181. doi: 10.1016/j.jmatprotec.2017.07.021
    Zhang H, Wang D, Xue P, et al. Achieving ultra-high strength friction stir welded joints of high nitrogen stainless steel by forced water cooling[J]. Journal of Materials Science & Technology, 2018, 34(11): 2183 − 2188.
    Mohammed R, Reddy G M, Rao K S. Welding of nickel free high nitrogen stainless steel: microstructure and mechanical properties[J]. Defence Technology, 2017, 13(2): 59 − 71. doi: 10.1016/j.dt.2016.06.003
    Li X, Zhang H. Analysis of microstructure and properties of welded joint of high nitrogen steel by hybrid welding[J]. Materials Research Express, 2018, 6(4): 1 − 4.
    Lan H F, Du L X, Liu X H. Microstructure and mechanical properties of a low carbon bainitic steel[J]. Steel Research International, 2013, 84(4): 352 − 361. doi: 10.1088/2053-1591/aad6c5
    赵 琳, 陈武柱, 张旭东. 新一代超低碳贝氏体钢激光焊接热影响区的组织和性能[J]. 中国激光, 2006, 33(3): 408 − 412.

    Zhao Lin, Chen Wuzhu, Zhang Xudong. Microstructure and mechanical properties of laser welded heat-affected zone in new ultra-low carbon bainitic steel[J]. Laser Technology, 2006, 33(3): 408 − 412.
    Ming Zhu, Wang Kehong, Qu Tianpeng, et al. Thermodynamic study on welding wire design of high nitrogen austenitic stainless steel[J]. China Welding, 2019, 28(1): 49 − 55.
    赵 琳, 田志凌, 彭 云, 等. 1Cr22Mn16N高氮钢激光焊接I. 焊接保护气体组成和热输入对焊缝氮含量及气孔性的影响[J]. 焊接学报, 2007, 28(8): 89 − 91.

    Zhao Lin, Tian Zhiling, Peng Yun, et al. Laser welding of high nitrogen steel 1Cr22Mn16N I .influence of shielding gas composition and heat input on N-content and porosity of weld metal[J]. Transactions of the China Welding Institution, 2007, 28(8): 89 − 91.
    明 珠, 王克鸿, 王 伟, 等. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104 − 108.

    Ming Zhu, Wang Kehong, Wang Wei, et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 104 − 108.
  • Related Articles

    [1]JIN Xiaokun, ZHANG Shichao, DIAO Wangzhan, DU Jinfeng, LIANG Jun, ZHANG Zheng. Effect of aging time on the microstructure and mechanical properties of the SP2215 steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 95-105. DOI: 10.12073/j.hjxb.20221028006
    [2]CAO Rui, QIAO Lixue, CHE Hongyan, LI Shang, WANG Tiejun, DONG Hao. Microstructure and mechanical properties of flash butt welding high carbon martensitic stainless steel M390 and austenitic stainless steel 304[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 27-33. DOI: 10.12073/j.hjxb.20210616005
    [3]LIN Panpan, LIN Tiesong, HE Peng, WANG Maochang, YANG Hangao. Microstructure and mechanical property of Al2O3/Ti joint with biocompatibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 16-23. DOI: 10.12073/j.hjxb.2019400175
    [4]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [5]MING Zhu, WANG Kehong, WANG Wei, FAN Chenglei, WANG Youqi. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 104-108. DOI: 10.12073/j.hjxb.2019400021
    [6]XU Nan, BAO Yefeng, SONG Qining. Research on microstructure and mechanical properties of cold source assisted friction stir welded H70 brass joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 93-96. DOI: 10.12073/j.hjxb.2018390182
    [7]HAN Zhiqiang1, DONG Danyang2, LIU Yang1, JIN Sen2, TANG Zhenyu2. Microstructure and mechanical properties of fiber laser welding of 950 MPa grade twinning-induced plasticity steel for automotive industry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 63-68. DOI: 10.12073/j.hjxb.2018390124
    [8]JING Hao, WANG Kehong, QIANG Wei, KONG Jian. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 95-98. DOI: 10.12073/j.hjxb.20170422
    [9]LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of peak temperature and cooling rate in welding thermal cycle on microstructure and properties of CGHAZ inSA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 13-17.
    [10]TAI Feng, GUO Fu, SHEN Hao, Han Mengting. Effect of heating rate on microstructure and mechanical properties of composite solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 79-82.
  • Cited by

    Periodical cited type(4)

    1. 王星星,田家豪,李帅,方乃文,何鹏,倪增磊,温国栋. 高氮钢连接技术研究进展. 焊接学报. 2023(09): 118-128+136 . 本站查看
    2. 杨炙坤,宁凯,钟淳亮,李星燃,刘凤德,张宏. 高氮钢复合焊接焊缝氮含量与接头性能研究. 应用激光. 2022(04): 1-6 .
    3. 马良超,王大锋,马冰,陈东高,张迎迎. 不同氮含量焊丝熔化极气体保护焊高氮钢的微观组织与力学性能. 兵工学报. 2021(06): 1303-1311 .
    4. 魏军会,杜文波,张宝,崔佳凯,易俊,康诗琪,李建明,冯春宇. 焊道间隔冷却时间对Inconel 625温度场的影响. 兵器材料科学与工程. 2020(06): 90-94 .

    Other cited types(3)

Catalog

    Article views (393) PDF downloads (28) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return