Advanced Search
MA Qiang, WANG Tao, CHEN Yongwei, HE Peng, CHEN Xiaojiang, JIN Xiao, ZHENG Bin. Effect of 3D-SiO2-fiber interlayer on SiC and Nb vacuum brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 21-27. DOI: 10.12073/j.hjxb.20220930002
Citation: MA Qiang, WANG Tao, CHEN Yongwei, HE Peng, CHEN Xiaojiang, JIN Xiao, ZHENG Bin. Effect of 3D-SiO2-fiber interlayer on SiC and Nb vacuum brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 21-27. DOI: 10.12073/j.hjxb.20220930002

Effect of 3D-SiO2-fiber interlayer on SiC and Nb vacuum brazing

More Information
  • Received Date: September 29, 2022
  • Available Online: July 18, 2023
  • In order to solve the problems such as the less addition and agglomeration of enhanced particles, a new composite interlayer was introduced to assist in brazing between SiC and Nb. The composite interlayer was braided by SiO2-fiber in three dimension with loose and porous structure (3D-SiO2-fiber). The wettability of 3D-SiO2-fiber, microstructure and mechanical property of the joints were analyzed by SEM, XRD and electronic universal testing machine. The results show that, when the content of Ti increased from 4.5% to 6.0%, the wetting angle of AgCu-Ti active filler metal on the surface of 3D-SiO2-fiber interlayer decreased from 90° to 3°. The wettability was significantly improved. Moreover, the immersion depth of AgCu-Ti active filler metal in 3D-SiO2-fiber interlayer increased continuously. With the increase of brazing temperature (950 ~980 ℃) and holding time (10 ~25 min), the reaction between 3D-SiO2-fiber and AgCu-6.0Ti active filler metal was gradually full. This method not only ensured that 3D-SiO2-fiber was able to be added to the filler metal in a large amount, but also Cu3Si, TiSi, α-Ti and Ti2Cu particles dispersed in the joint. So, the residual stress was relieved and the shear strength of joint was improved. Then the reliable joint between ceramic and metal was realized.
  • Ma Q, Pu J, Li S G, et al. Introducing a 3D-SiO2-fiber interlayer for brazing SiC with TC4 by AgCuTi[J]. Journal of Advanced Joining Processes, 2022, 5: 100082. doi: 10.1016/j.jajp.2021.100082
    He Z J, Li C, Si X Q, et al. Wetting of Si–14Ti alloy on SiCf/SiC and C/C composites and their brazed joint at high temperatures[J]. Ceramics International, 2021, 47(10): 13845 − 13852. doi: 10.1016/j.ceramint.2021.01.250
    Wang Z Y, Hassaan A B, Ma Q, et al. The use of a carbonized phenolic formaldehyde resin coated Ni foam as an interlayer to increase the high-temperature strength of C/C composite-Nb brazed joints[J]. Ceramics International, 2022, 48(6): 7584 − 7592. doi: 10.1016/j.ceramint.2021.11.302
    Ba J, Ji X, Wang B, et al. Microstructure design of C/C composites through electrochemical corrosion for brazing to Nb[J]. Journal of Materials Science & Technology, 2022, 104: 33 − 40.
    Liao M Q, Gong H S, Qu N, et al. CALPHAD aided mechanical properties screening in full composition space of NbC-TiC-VC-ZrC ultra-high temperature ceramics[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106191. doi: 10.1016/j.ijrmhm.2023.106191
    Cui B, Song L Y, Liu Z W, et al. Study of the morphology and properties of diamond joints brazed with carbide-reinforced Cu-Sn-Ti filler metal[J]. China Welding, 2022, 31(3): 53 − 60.
    杨景红, 刘甲坤, 付曦, 等. SiO2-BN复相陶瓷润湿性及其接头微观组织[J]. 焊接学报, 2022, 43(10): 31 − 36. doi: 10.12073/j.hjxb.20210908002

    Yang Jinghong, Liu Jiakun, Fu Xi, et al. Study on the wettability and the microstructure of SiO2-BN multiphase ceramics[J]. Transactions of the China Welding Institution, 2022, 43(10): 31 − 36. doi: 10.12073/j.hjxb.20210908002
    Liao M Q, Wang F J, Zhu J T, et al. P2221-C8: A novel carbon allotrope denser than diamond[J]. Scripta Materialia, 2022, 212: 114549. doi: 10.1016/j.scriptamat.2022.114549
    Guo W, Li K, Zhang H Q, et al. Low residual stress C/C composite-titanium alloy joints brazed by foam interlayer[J]. Ceramics International, 2022, 48(4): 5260 − 5266. doi: 10.1016/j.ceramint.2021.11.067
    Zhao Y X, Wang M R, Cao J, et al. Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler[J]. Materials and Design, 2015, 76: 40 − 46. doi: 10.1016/j.matdes.2015.03.046
    Fan D Y, Li C L, Huang J H, et al. A novel composite-diffusion brazing process based on transient liquid phase bonding of a Cf/SiC composite to Ti-6Al-4V[J]. Ceramics International, 2017, 43(15): 13009 − 13012. doi: 10.1016/j.ceramint.2017.06.044
    Fan D Y, Huang J H, Zhao X P, et al. Joining of Cf /SiC composite to Ti-6Al-4V with (Ti-Zr-Cu-Ni) + Ti filler based om in-situ alloying concept[J]. Ceramics International, 2017, 43(5): 4151 − 4158. doi: 10.1016/j.ceramint.2016.12.030
    Cui B, Huang J H, Xiong J H, et al. Reaction-composite brazing of carbon fiber reinforced SiC composite and TC4 alloy using Ag-Cu-Ti-(Ti + C) mixed powder[J]. Materials Science and Engineering A, 2013, 562: 203 − 210. doi: 10.1016/j.msea.2012.11.031
    Wang Z Y, Wang G, Li M N, et al. Three-dimensional graphene-reinforced Cu foam interlayer for brazing C/C composites and Nb[J]. Carbon, 2017, 118: 723 − 730. doi: 10.1016/j.carbon.2017.03.099
    Wang Z Y, Li M N, Ba J, et al. In-situ synthesized TiC nano-flakes reinforced C/C composite-Nb brazed joint[J]. Journal of the European Ceramic Society, 2018, 38(4): 1059 − 1068. doi: 10.1016/j.jeurceramsoc.2017.11.059
    Wang P C, Xu Z Q, Qin B, et al. Active brazing of high entropy ceramic and Nb metal: Interfacial microstructure and brazing mechanism[J]. Vacuum, 2022, 205: 111464. doi: 10.1016/j.vacuum.2022.111464
    Kelkar G P, Carim A H. Synthesis, properties, and ternary phase stability of M6X compounds in the Ti-Cu-O system[J]. Journal of the American Ceramic Society, 1993, 76(7): 1815 − 1820. doi: 10.1111/j.1151-2916.1993.tb06652.x
    Nguyen L M, Leguillon D, Gillia O, et al. Bond failure of a SiC/SiC brazed assembly[J]. Mechanics of Materials, 2012, 50: 1 − 8. doi: 10.1016/j.mechmat.2012.03.001
    Shi X H, Jin X X, Lin H J, et al. Joining of SiC nanowires-toughened SiC coated C/C composites and nickel based superalloy (GH3044) using Ni71CrSi interlayer[J]. Journal of Alloys and Compounds, 2017, 693: 837 − 842. doi: 10.1016/j.jallcom.2016.09.245
    Peng Y, Li J L, Shi J M, et al. Microstructure and mechanical properties of Al2O3 ceramic and Ti2AlNb alloy joints brazed with Al2O3 particles reinforced Ag-Cu filler metal[J]. Vacuum, 2021, 192: 110430. doi: 10.1016/j.vacuum.2021.110430
    Zhao L, Jiang Z L, Zhang C, et al. Theoretical modeling based on stress wave propagation and experimental verification of residual stress in stereolithography printed ZrO2[J]. Ceramics International, 2021, 47: 26935 − 26941. doi: 10.1016/j.ceramint.2021.06.105
  • Related Articles

    [1]ZHAO Pengfei, WANG Xuhao, GUO Yang, WANG Ting, ZHANG Yusheng, XU Jian, MAO Guijun. Effect of welding speed on microstructure and mechanical properties of electron beam welded joints of 12Cr heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 55-62. DOI: 10.12073/j.hjxb.20240507004
    [2]WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002
    [3]GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004
    [4]LIN Panpan, LIN Tiesong, HE Peng, WANG Maochang, YANG Hangao. Microstructure and mechanical property of Al2O3/Ti joint with biocompatibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 16-23. DOI: 10.12073/j.hjxb.2019400175
    [5]LIU Kaixuan, SUN Zhuanping, YANG Xinqi, DU Bo, SONG Jianling. Microstructure and mechanical properties of friction plug welding for friction stir welded aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 118-125. DOI: 10.12073/j.hjxb.2019400165
    [6]ZHANG Man, WANG Pengfei, ZHANG Lincai, LIN Yuebin. Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 55-58.
    [7]QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8.
    [8]HAN Xianpeng, XUE Songbai, Gu Liyong, GU Wenhua, ZHANG Xin. Effect of gallium on microstructure and mechanical properties of Ag-Cu-Zn filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 45-48.
    [9]YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76.
    [10]XIE Yong-hui, XIONG Hua-ping, MAO Wei, CHENG Yao-yong. Microstructure and mechanical propertites of SiC joint brazed with heat resistant active brazing alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 55-57.
  • Cited by

    Periodical cited type(2)

    1. 陈昕航,徐新胜,曹立,吴松泽,陆弘毅. 基于残差修正的产品质量预测方法. 制造技术与机床. 2025(02): 177-184 .
    2. 沈植诚,王宾,程军辉. 基于SMA-BP算法的焊件动态电阻预测. 中国新技术新产品. 2024(21): 18-20 .

    Other cited types(1)

Catalog

    Article views (176) PDF downloads (60) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return