Advanced Search
XIONG Xiaoli, LU Yanan, LU Mengdan, GUAN Xinwang, LI Lu. Longitudinal residual stress distribution of Q460 high-strength steel welded T-section[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 63-73. DOI: 10.12073/j.hjxb.20220927001
Citation: XIONG Xiaoli, LU Yanan, LU Mengdan, GUAN Xinwang, LI Lu. Longitudinal residual stress distribution of Q460 high-strength steel welded T-section[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 63-73. DOI: 10.12073/j.hjxb.20220927001

Longitudinal residual stress distribution of Q460 high-strength steel welded T-section

More Information
  • Received Date: September 26, 2022
  • Available Online: June 29, 2023
  • Longitudinal residual stress is one of the main factors affecting the ultimate bearing capacity of steel compression members. Firstly, the longitudinal residual stress distribution of four Q460 high-strength steel welded T-sections was measured using the sectioning method. Secondly, a thermal-structural coupling analysis method was used in general finite element program ANSYS to simulate the cutting and welding processes of the steel plates. The numerical results of longitudinal residual stress were then compared with experimental values to verify the correctness of the finite element analysis process. Furthermore, based on the finite element method, longitudinal residual stress distributions of Q460 high-strength steel welded T-sections with different cross-sectional dimensions were obtained, and a summary analysis was conducted to study the effects of the width-thickness ratio and thickness on the magnitude and distribution of residual stress. The results show that the tensile residual stress is distributed in the area around the weld, the outer extension of the flange and web, while the compressive residual stress is distributed in the middle part of the outer extension of the flange and web. Moreover, the tensile residual stress is independent of the width-thickness ratio and the plate thickness, while the compressive residual stress is inversely proportional to the width-thickness ratio and plate thickness. The residual stress in the flange and web is accord with the self-equilibrium condition. According to the above analysis, a longitudinal residual stress distribution model for Q460 high-strength steel welded T-section is proposed, which can be used for the subsequent numerical analysis of the overall stability and bearing capacity of steel compression members.
  • 申红侠, 任豪杰. 高强钢构件稳定性研究最新进展[J]. 建筑钢结构进展, 2017, 19(4): 53 − 62,92. doi: 10.13969/j.cnki.cn31-1893.2017.04.007

    Shen Hongxia, Ren Haojie. Recent advances in research on stability behavior of high strength steel members[J]. Progress in Steel Building Structures, 2017, 19(4): 53 − 62,92. doi: 10.13969/j.cnki.cn31-1893.2017.04.007
    Sisodia R P S, Gaspar M, Sepsi M, et al. Comparative evaluation of residual stresses in vacuum electron beam welded high strength steel S960QL and S960M butt joints[J]. Vacuum, 2021, 184: 109931. doi: 10.1016/j.vacuum.2020.109931
    曹现雷, 沈浩, 徐勇, 等. Q800高强钢焊接工字形截面残余应力试验分析[J]. 焊接学报, 2018, 39(3): 36 − 41. doi: 10.12073/j.hjxb.2018390064

    Cao Xianlei, Shen Hao, Xu Yong, et al. Experimental investigation of residual stress in welded Q800 high strength steel I-shaped cross-section[J]. Transactions of the China Welding Institution, 2018, 39(3): 36 − 41. doi: 10.12073/j.hjxb.2018390064
    Guo D, Zhou C, Ren R, et al. Residual stresses of Q235 steel wallboard-Q460 high-strength steel column structural system[J]. Journal of Constructional Steel Research, 2022, 197: 107450. doi: 10.1016/j.jcsr.2022.107450
    Wang Y, Feng G, Pu X, et al. Influence of welding sequence on residual stress distribution and deformation in Q345 steel H-section butt-welded joint[J]. Journal of Materials Research and Technology, 2021(13): 144 − 153.
    潘毅, 仵振, 周祎, 等. 高强钢焊接箱形柱受力性能研究(Ⅰ): 残余应力统一分布模型[J]. 建筑结构学报, 2022, 43(3): 138 − 147.

    Pan Yi, Wu Zhen, Zhou Yi, et al. Study on mechanical properties of high strength steel welded box columns(Ⅰ): unified model of residual stress[J]. Journal of Building Structures, 2022, 43(3): 138 − 147.
    熊晓莉, 王田, 谌磊. 国产Q460高强钢焊接T形截面残余应力分布试验研究[J]. 建筑钢结构进展, 2021, 23(9): 42 − 53. doi: 10.13969/j.cnki.cn31-1893.2021.09.006

    Xiong Xiaoli, Wang Tian, Chen Lei. Experimental study on residual stress in welded T-section using domestic Q460 high strength steel[J]. Progress in Steel Building Structures, 2021, 23(9): 42 − 53. doi: 10.13969/j.cnki.cn31-1893.2021.09.006
    Cao X L, Xu Y, Kong Z Y, et al. Residual stress of 800 MPa high strength steel welded T section: Experimental study[J]. Journal of Constructional Steel Research, 2017, 131: 30 − 37. doi: 10.1016/j.jcsr.2016.12.001
    Jokiaho T, Laitinen A, Santa-Aho S, et al. Characterization of flame cut heavy steel: Modeling of temperature history and residual stress formation[J]. Metallurgical and Materials Transactions B, 2017, 48(6): 2891 − 2901. doi: 10.1007/s11663-017-1090-x
    冀伟, 张鹏, 姜红. 波形钢腹板梁T形接头焊接温度场分析[J]. 焊接, 2022(6): 8 − 14.

    Ji Wei, Zhang Peng, Jiang Hong. Analysis of welding temperature field of T-joint of the girder with corrugated steel web[J]. Welding & Joining, 2022(6): 8 − 14.
    Zhu Zikun, Han Yang, Zhang Zhou, et al. Numerical simulation of residual stress and deformation for submerged arc welding of Q690D high strength low alloy steel thick plate[J]. China Welding, 2021, 30(3): 49 − 58.
    Park J, An G, Ma N, et al. Effect of transverse restraint on welding residual stress in V-groove butt welding[J]. Metals, 2022, 12(4): 654. doi: 10.3390/met12040654
    董华, 苏文学, 张国, 等. 焊接顺序对 Q345qD 钢厚板焊接接头残余应力和变形的影响[J]. 焊接, 2023(4): 21 − 28. doi: 10.12073/j.hj.20220307002

    Dong Hua, Su Wenxue, Zhang Guo, et al. Effect of welding sequence on residual stress and deformation of welded joint of Q345qD steel thick plate[J]. Welding & Joining, 2023(4): 21 − 28. doi: 10.12073/j.hj.20220307002
    桂晓燕, 张艳喜, 游德勇, 等. 激光电弧复合焊接顺序对304不锈钢T形接头影响的模拟试验分析[J]. 焊接学报, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005

    Gui Xiaoyan, Zhang Yanxi, You Deyong, et al. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. Transactions of the China Welding Institution, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005
    杜宝帅, 马学周, 张忠文, 等. 超细晶Q460钢多层多道焊接头残余应力的数值模拟[J]. 焊接学报, 2014, 35(2): 42 − 46.

    Du Baoshuai, Ma Xuezhou, Zhang Zhongwen, et al. Numerical simulation of residual stress in multipass weld joint of ultrafine-grained Q460 steel[J]. Transactions of the China Welding Institution, 2014, 35(2): 42 − 46.
    魏雷, 魏淳. Q460钢T型接头单边开坡口非对称焊接的数值模拟[J]. 热加工工艺, 2019, 48(7): 244 − 246. doi: 10.14158/j.cnki.1001-3814.2019.07.063

    Wei Lei, Wei Chun. Numerical simulation of asymmetrical welding of Q460 steel T-joints with single side groove[J]. Hot Working Technology, 2019, 48(7): 244 − 246. doi: 10.14158/j.cnki.1001-3814.2019.07.063
    Wei Z Y, Liu Y J, Li R, et al. Numerical and experimental research on distribution and evolution of coupling residual stresses induced by cutting-welding continuous process[J]. Journal of Ship Production and Design, 2018, 34(2): 134 − 143. doi: 10.5957/JSPD.160037
    中华人民共和国住房和城乡建设部. 钢结构设计标准: GB50017-2017[S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for design of steel structures: GB50017-2017[S]. Beijing: China Architecture & Building Press, 2017.
    CEN. Eurocode 3: Design of steel structures-part 1.2: General rules-structural fire design[S]. London: European Committee for Standardization, 2005.
    Deng D, Kiyoshima S. Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences[J]. Nuclear Engineering and Design, 2010, 240(4): 688 − 696. doi: 10.1016/j.nucengdes.2009.11.049

Catalog

    Article views (248) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return