Advanced Search
KONG Hua, YANG Wuxiong, ZOU Jianglin, ZHAO Zhenjia. Influence of flow direction of high-speed shielding gas on plume in fiber laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 14-20. DOI: 10.12073/j.hjxb.20220920001
Citation: KONG Hua, YANG Wuxiong, ZOU Jianglin, ZHAO Zhenjia. Influence of flow direction of high-speed shielding gas on plume in fiber laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 14-20. DOI: 10.12073/j.hjxb.20220920001

Influence of flow direction of high-speed shielding gas on plume in fiber laser deep penetration welding

More Information
  • Received Date: September 19, 2022
  • Available Online: June 29, 2023
  • Plume is an inherent physical phenomenon in the process of fiber laser deep penetration welding. The plume consisted of two parts: the oscillating part at the bottom and has a serious negative impact on the laser welding process. At present, the removal method of narrow and long plume is mainly horizontal blowing with supersonic air curtain, but there is no targeted removal method for the swing part at the bottom. In this paper, 6 kW fiber laser is used to weld low carbon steel, and the influence of side shaft high-speed protective air flow on these two parts of plume is compared and studied. At the same time, the influence of protective airflow direction on the welding process was studied, the welding process was observed and the weld morphology was analyzed.
  • Saha P, Datta S, Raza M S, et al. Effects of heat input on weld-bead geometry, surface chemical composition, corrosion behavior and thermal properties of fiber laser-welded nitinol shape memory alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(5): 2754 − 2763. doi: 10.1007/s11665-019-04077-0
    Sharma L, Chhibber R. Study of weld bead chemical, microhardness & microstructural analysis using submerged arc welding fluxes for linepipe steel applications[J]. Ceramics International, 2020, 46(15): 24615 − 24653.
    Hao K, Wang H, Gao M, et al. Laser welding of AZ31B magnesium alloy with beam oscillation[J]. Journal of Materials Research and Technology, 2019, 8(3): 3044 − 3053.
    赵乐, 曹政, 邹江林, 等. 高功率光纤激光深熔焊接匙孔的形貌特征[J]. 中国激光, 2020, 47(11): 1102005. doi: 10.3788/CJL202047.1102005

    Zhao Le, Cao Zheng, Zou Jianglin, et al. Keyhole morphological characteristics in high-power deep penetration fiber laser welding[J]. Chinese Journal of Lasers, 2020, 47(11): 1102005. doi: 10.3788/CJL202047.1102005
    徐国建, 李响, 杭争翔, 等. 光纤激光及CO2激光焊接高强钢[J]. 激光与光电子学进展, 2014, 51(3): 031403.

    Xu Guojian, Li Xiang, Hang Zhengxiang, et al. Laser welding of high strength steel using fiber laser and CO2 laser[J]. Laser & Optoelectronics Progress, 2014, 51(3): 031403.
    邹江林, 吴世凯, 肖荣诗, 等. 高功率光纤激光和CO2激光焊接熔化效率对比[J]. 中国激光, 2013, 40(8): 0803002. doi: 10.3788/CJL201340.0803002

    Zou Jianglin, Wu Shikai, Xiao Rongshi, et al. Comparison of melting efficiency in high power fiber laser and CO2 laser welding[J]. Chinese Journal of Lasers, 2013, 40(8): 0803002. doi: 10.3788/CJL201340.0803002
    张明军. 万瓦级光纤激光深熔焊接厚板金属蒸汽行为与缺陷控制[D]. 长沙: 湖南大学, 2013.

    Zhang Mingjun. Study on the behavior of metallic vapor plume and defects control during deep penetration laser welding of thick plate using 10-kW level high power fiber laser [D]. Changsha: Hunan University, 2013.
    Li R, Wang T, Wang C, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics & Laser Technology, 2014, 64: 172 − 183.
    Greses J, Hilton P A, Barlow C Y, et al. Plume attenuation under high power Nd: yttritium aluminum garnet laser welding[J]. Journal of Laser Applications, 2004, 16(1): 9 − 15. doi: 10.2351/1.1642636
    Zhang B, Dong Y, Du Y, et al. Microstructure and formability performance of fiber laser welded 1.2 GPa grade hot-rolled TRIP steel joints[J]. Optics & Laser Technology, 2021, 143(34): 107 − 341.
    Zhang C, Geng L, Ming G, et al. Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel[J]. Materials, 2017, 10(2): 1 − 10.
    Zou J, Yang W, Wu S, et al. Effect of plume on weld penetration during high-power fiber laser welding[J]. Journal of Laser Applications, 2016, 28(2): 22 − 30.
    Zhang M, Zhang Z, Tang K, et al. Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser[J]. Optics & Laser Technology, 2018, 98: 97 − 105.
    韩雪, 赵宇, 邹江林, 等. 基于可视化观察的光纤激光深熔焊接羽辉形成原因分析[J]. 中国激光, 2020, 47(6): 0602004. doi: 10.3788/CJL202047.0602004

    Han Xue, Zhao Yu, Zou Jianglin, et al. Analysis of plume formation in fiber laser deep penetration welding based on visual observation[J]. Chinese Journal of Lasers, 2020, 47(6): 0602004. doi: 10.3788/CJL202047.0602004
    邹江林, 李飞, 牛建强, 等. 高功率光纤激光焊接羽辉对焊接过程的影响[J]. 中国激光, 2014, 41(6): 0603005. doi: 10.3788/CJL201441.0603005

    Zou Jianglin, Li Fei, Niu Jianqiang, et al. Effect of laser-induced plume on welding process during high power fiber laser welding[J]. Chinese Journal of Lasers, 2014, 41(6): 0603005. doi: 10.3788/CJL201441.0603005
    Zhao L, Tsukamoto S, Arakane G, et al. Prevention of porosity by oxygen addition in fibre laser and fibre laser–GMA hybrid welding[J]. Science & Technology of Welding & Joining, 2014, 19(2): 91 − 97.
    Schmidt L, Schricker K, Bergmann J P, et al. Effect of local gas flow in full penetration laser beam welding with high welding speeds[J]. Applied Sciences-Basel, 2020, 10(5): 1867. doi: 10.3390/app10051867
    Cai Y, Heng H, Li F, et al. The influences of welding parameters on the metal vapor plume in fiber laser welding based on 3D reconstruction[J]. Optics & Laser Technology, 2018, 107: 1 − 7.
    Li M, Xiao R S, Zou J L, et al. A multiple synchronous imaging method for strong illuminants induced during a hot working process[J]. Laser Physics Letters, 2019, 16(6): 66003. doi: 10.1088/1612-202X/ab1896
    赵乐, 韩雪, 邹江林, 等. 光纤激光深熔焊接小孔形成过程的研究[J]. 激光与光电子学进展, 2020, 57(7): 227 − 233.

    Zhao Le, Han Xue, Zou Jianglin, et al. Research on formation process of keyhole during fiber laser deep penetration welding[J]. Laser & Optoelectronics Progress, 2020, 57(7): 227 − 233.
    Li S C, Chen G, Zhang M J, et al. Dynamic keyhole profile during high-power deep-penetration laser welding[J]. Journal of Materials Processing Technology, 2014, 214(3): 565 − 570. doi: 10.1016/j.jmatprotec.2013.10.019
    Bao H T, Liu J H, Liu K, et al. Effect of vacuum laser welding process parameters on penetration depth of AZ31 magnesium alloy and defect analysis[J]. Applied Laser, 2008, 28(5): 5.
    Zou J L, Wu S K, He Y, et al. Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding[J]. Science and Technology Welding and Joining, 2015, 20(8): 655 − 658. doi: 10.1179/1362171815Y.0000000049
    李明星, 胡治华, 陈铠. 保护气体种类对镀锌板激光焊接性的影响[J]. 激光杂志, 2006, 27(6): 72 − 73.

    Li Mingxing, Hu Zhihua, Chen Kai. The effect of shielding gas type on laser weld ability of galvanized stell[J]. Laser Journal, 2006, 27(6): 72 − 73.
    Kaplan A F H, Powell J. Spatter in laser welding[J]. Journal of Laser Applications, 2011, 23(3): 3337 − 3344.
    Pellone L, Inamke G, Hong K M, et al. Effects of interface gap and shielding gas on the quality of alloy AA6061 fiber laser lap welding[J]. Journal of Materials Processing Technology, 2019, 268: 201 − 212. doi: 10.1016/j.jmatprotec.2019.01.025
    Konuk A R, Aarts R, Veld A, et al. Process control of stainless steel laser welding using an optical spectroscopic sensor[J]. Physics Procedia, 2011, 12(part-PA): 744 − 751.
    Wu D S, Hua X M, Huang L J, et al. Observation of the keyhole behavior, spatter, and keyhole-induced bubble formation in laser welding of a steel/glass sandwich[J]. Welding in the World, 2019, 63(3): 815 − 823. doi: 10.1007/s40194-019-00710-7
    Zou J L, Ha N, Xiao R S, et al. Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding[J]. Optics Express, 2017, 25(15): 17650 − 17656. doi: 10.1364/OE.25.017650
    Fabbro R, Slimani S, Coste F, et al. Study of keyhole behaviour for full penetration Nd-Yag CW laser welding[J]. Journal of Physics D:Applied Physics, 2005, 38(12): 1881 − 1887. doi: 10.1088/0022-3727/38/12/005
    Li M, Xiao R S, Zou J L, et al. Correlation between plume fluctuation and keyhole dynamics during fiber laser keyhole welding[J]. Journal of Laser Applications, 2020, 32(2): 022010. doi: 10.2351/1.5138219
    Zou J, Han X, Zhao Y, et al. Investigation on plume formation during fiber laser keyhole welding based on in-situ measurement of particles in plume[J]. Journal of Manufacturing Processes, 2021, 65(15): 153 − 160.
    Zou J L, Wu S K, Yang W X, et al. A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding[J]. Materials & Design, 2016, 89(5): 785 − 790.
    Zhang M J, Chen G Y, Zhou Y, et al. Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate[J]. Applied Surface Science, 2013, 280(Complete): 868 − 875.
    Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser[J]. Science & Technology of Welding & Joining, 2009, 14(4): 288 − 294.
    Chang B H, Blackburn J, Allen C, et al. Studies on the spatter behaviour when welding AA5083 with a Yb-fibre laser[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84: 1769 − 1776. doi: 10.1007/s00170-015-7863-y
    Nakamura H, Kawahito Y, Nishimoto K, et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Applications, 2015, 27(3): 032012. doi: 10.2351/1.4922383
    Francisco C N, Milton P, Luiz E S P, et al. Effect of power modulation frequency on porosity formation in laser welding of SAE 1020 steels[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9): 2509 − 2517.
    Zhang G L, Zhu B Q, Zou J L, et al. Correlation between the spatters and evaporation vapor on the front keyhole wall during fiber laser keyhole welding[J]. Journal of Materials Research and Technology, 2020, 9(6): 15143 − 15152. doi: 10.1016/j.jmrt.2020.10.103
  • Related Articles

    [1]XU Cheng, DONG Shihao, OU Zhengyu, HAN Zandong. Defect recognition of circumferential welds of pipelines in TOFD images based on YOLOv5[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 22-31. DOI: 10.12073/j.hjxb.20240115001
    [2]KONG Hua, ZHAO Zhenjia, ZOU Jianglin, WANG Zi, HUANG Zehong. The influence of laser-induced plume in the keyhole on the welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 20-26. DOI: 10.12073/j.hjxb.20220530001
    [3]HU Dan, LYU Bo, WANG Jingjing, GAO Xiangdong. Study on HOG-SVM detection method of weld surface defects using laser visual sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 57-62, 70. DOI: 10.12073/j.hjxb.20211231001
    [4]XIAO Sizhe, LIU Zhenguo, YAN Zhihong, LI Min, HUANG Jiyuan. Defect generation of small sample laser welding based on generative adversarial network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 43-48. DOI: 10.12073/j.hjxb.20220429003
    [5]HUANG Ruisheng, YANG Yicheng, JIANG Bao, NIE Xin, WANG Ziran. Analysis of welding characteristics of ultra-high power laser-arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 73-77,96. DOI: 10.12073/j.hjxb.2019400316
    [6]XU Kunshan, QIU Xingqi, JIANG Hui, WEI Renchao, ZHONG Junmin, . Analysis of magnetic memory signal of 20# steel welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 13-16,21.
    [7]SONG Jiaqiang, XIAO Jun, ZHANG Guangjun, WU Lin. Numerical simulation of free metal transfer of low current CO2 arc welding based on Surface Evolver[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 75-78,98.
    [8]LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96.
    [9]WANG Ya-rong, ZHANG Zhong-dian. Defects in joint for resistance spot welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 9-12.
    [10]Liu Dezhen, Wei Xing, Zhou Yanhua. Ultrasonic C Scanning Image of Weld Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 77-83.
  • Cited by

    Periodical cited type(1)

    1. 陆巍巍,陈晨曦,徐港来,葛金波,温业勇. 动力电池连接片激光焊接虚焊原因分析与改善. 机械制造文摘(焊接分册). 2024(02): 19-23 .

    Other cited types(1)

Catalog

    Article views (224) PDF downloads (82) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return