Citation: | KONG Hua, YANG Wuxiong, ZOU Jianglin, ZHAO Zhenjia. Influence of flow direction of high-speed shielding gas on plume in fiber laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 14-20. DOI: 10.12073/j.hjxb.20220920001 |
Saha P, Datta S, Raza M S, et al. Effects of heat input on weld-bead geometry, surface chemical composition, corrosion behavior and thermal properties of fiber laser-welded nitinol shape memory alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(5): 2754 − 2763. doi: 10.1007/s11665-019-04077-0
|
Sharma L, Chhibber R. Study of weld bead chemical, microhardness & microstructural analysis using submerged arc welding fluxes for linepipe steel applications[J]. Ceramics International, 2020, 46(15): 24615 − 24653.
|
Hao K, Wang H, Gao M, et al. Laser welding of AZ31B magnesium alloy with beam oscillation[J]. Journal of Materials Research and Technology, 2019, 8(3): 3044 − 3053.
|
赵乐, 曹政, 邹江林, 等. 高功率光纤激光深熔焊接匙孔的形貌特征[J]. 中国激光, 2020, 47(11): 1102005. doi: 10.3788/CJL202047.1102005
Zhao Le, Cao Zheng, Zou Jianglin, et al. Keyhole morphological characteristics in high-power deep penetration fiber laser welding[J]. Chinese Journal of Lasers, 2020, 47(11): 1102005. doi: 10.3788/CJL202047.1102005
|
徐国建, 李响, 杭争翔, 等. 光纤激光及CO2激光焊接高强钢[J]. 激光与光电子学进展, 2014, 51(3): 031403.
Xu Guojian, Li Xiang, Hang Zhengxiang, et al. Laser welding of high strength steel using fiber laser and CO2 laser[J]. Laser & Optoelectronics Progress, 2014, 51(3): 031403.
|
邹江林, 吴世凯, 肖荣诗, 等. 高功率光纤激光和CO2激光焊接熔化效率对比[J]. 中国激光, 2013, 40(8): 0803002. doi: 10.3788/CJL201340.0803002
Zou Jianglin, Wu Shikai, Xiao Rongshi, et al. Comparison of melting efficiency in high power fiber laser and CO2 laser welding[J]. Chinese Journal of Lasers, 2013, 40(8): 0803002. doi: 10.3788/CJL201340.0803002
|
张明军. 万瓦级光纤激光深熔焊接厚板金属蒸汽行为与缺陷控制[D]. 长沙: 湖南大学, 2013.
Zhang Mingjun. Study on the behavior of metallic vapor plume and defects control during deep penetration laser welding of thick plate using 10-kW level high power fiber laser [D]. Changsha: Hunan University, 2013.
|
Li R, Wang T, Wang C, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics & Laser Technology, 2014, 64: 172 − 183.
|
Greses J, Hilton P A, Barlow C Y, et al. Plume attenuation under high power Nd: yttritium aluminum garnet laser welding[J]. Journal of Laser Applications, 2004, 16(1): 9 − 15. doi: 10.2351/1.1642636
|
Zhang B, Dong Y, Du Y, et al. Microstructure and formability performance of fiber laser welded 1.2 GPa grade hot-rolled TRIP steel joints[J]. Optics & Laser Technology, 2021, 143(34): 107 − 341.
|
Zhang C, Geng L, Ming G, et al. Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel[J]. Materials, 2017, 10(2): 1 − 10.
|
Zou J, Yang W, Wu S, et al. Effect of plume on weld penetration during high-power fiber laser welding[J]. Journal of Laser Applications, 2016, 28(2): 22 − 30.
|
Zhang M, Zhang Z, Tang K, et al. Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser[J]. Optics & Laser Technology, 2018, 98: 97 − 105.
|
韩雪, 赵宇, 邹江林, 等. 基于可视化观察的光纤激光深熔焊接羽辉形成原因分析[J]. 中国激光, 2020, 47(6): 0602004. doi: 10.3788/CJL202047.0602004
Han Xue, Zhao Yu, Zou Jianglin, et al. Analysis of plume formation in fiber laser deep penetration welding based on visual observation[J]. Chinese Journal of Lasers, 2020, 47(6): 0602004. doi: 10.3788/CJL202047.0602004
|
邹江林, 李飞, 牛建强, 等. 高功率光纤激光焊接羽辉对焊接过程的影响[J]. 中国激光, 2014, 41(6): 0603005. doi: 10.3788/CJL201441.0603005
Zou Jianglin, Li Fei, Niu Jianqiang, et al. Effect of laser-induced plume on welding process during high power fiber laser welding[J]. Chinese Journal of Lasers, 2014, 41(6): 0603005. doi: 10.3788/CJL201441.0603005
|
Zhao L, Tsukamoto S, Arakane G, et al. Prevention of porosity by oxygen addition in fibre laser and fibre laser–GMA hybrid welding[J]. Science & Technology of Welding & Joining, 2014, 19(2): 91 − 97.
|
Schmidt L, Schricker K, Bergmann J P, et al. Effect of local gas flow in full penetration laser beam welding with high welding speeds[J]. Applied Sciences-Basel, 2020, 10(5): 1867. doi: 10.3390/app10051867
|
Cai Y, Heng H, Li F, et al. The influences of welding parameters on the metal vapor plume in fiber laser welding based on 3D reconstruction[J]. Optics & Laser Technology, 2018, 107: 1 − 7.
|
Li M, Xiao R S, Zou J L, et al. A multiple synchronous imaging method for strong illuminants induced during a hot working process[J]. Laser Physics Letters, 2019, 16(6): 66003. doi: 10.1088/1612-202X/ab1896
|
赵乐, 韩雪, 邹江林, 等. 光纤激光深熔焊接小孔形成过程的研究[J]. 激光与光电子学进展, 2020, 57(7): 227 − 233.
Zhao Le, Han Xue, Zou Jianglin, et al. Research on formation process of keyhole during fiber laser deep penetration welding[J]. Laser & Optoelectronics Progress, 2020, 57(7): 227 − 233.
|
Li S C, Chen G, Zhang M J, et al. Dynamic keyhole profile during high-power deep-penetration laser welding[J]. Journal of Materials Processing Technology, 2014, 214(3): 565 − 570. doi: 10.1016/j.jmatprotec.2013.10.019
|
Bao H T, Liu J H, Liu K, et al. Effect of vacuum laser welding process parameters on penetration depth of AZ31 magnesium alloy and defect analysis[J]. Applied Laser, 2008, 28(5): 5.
|
Zou J L, Wu S K, He Y, et al. Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding[J]. Science and Technology Welding and Joining, 2015, 20(8): 655 − 658. doi: 10.1179/1362171815Y.0000000049
|
李明星, 胡治华, 陈铠. 保护气体种类对镀锌板激光焊接性的影响[J]. 激光杂志, 2006, 27(6): 72 − 73.
Li Mingxing, Hu Zhihua, Chen Kai. The effect of shielding gas type on laser weld ability of galvanized stell[J]. Laser Journal, 2006, 27(6): 72 − 73.
|
Kaplan A F H, Powell J. Spatter in laser welding[J]. Journal of Laser Applications, 2011, 23(3): 3337 − 3344.
|
Pellone L, Inamke G, Hong K M, et al. Effects of interface gap and shielding gas on the quality of alloy AA6061 fiber laser lap welding[J]. Journal of Materials Processing Technology, 2019, 268: 201 − 212. doi: 10.1016/j.jmatprotec.2019.01.025
|
Konuk A R, Aarts R, Veld A, et al. Process control of stainless steel laser welding using an optical spectroscopic sensor[J]. Physics Procedia, 2011, 12(part-PA): 744 − 751.
|
Wu D S, Hua X M, Huang L J, et al. Observation of the keyhole behavior, spatter, and keyhole-induced bubble formation in laser welding of a steel/glass sandwich[J]. Welding in the World, 2019, 63(3): 815 − 823. doi: 10.1007/s40194-019-00710-7
|
Zou J L, Ha N, Xiao R S, et al. Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding[J]. Optics Express, 2017, 25(15): 17650 − 17656. doi: 10.1364/OE.25.017650
|
Fabbro R, Slimani S, Coste F, et al. Study of keyhole behaviour for full penetration Nd-Yag CW laser welding[J]. Journal of Physics D:Applied Physics, 2005, 38(12): 1881 − 1887. doi: 10.1088/0022-3727/38/12/005
|
Li M, Xiao R S, Zou J L, et al. Correlation between plume fluctuation and keyhole dynamics during fiber laser keyhole welding[J]. Journal of Laser Applications, 2020, 32(2): 022010. doi: 10.2351/1.5138219
|
Zou J, Han X, Zhao Y, et al. Investigation on plume formation during fiber laser keyhole welding based on in-situ measurement of particles in plume[J]. Journal of Manufacturing Processes, 2021, 65(15): 153 − 160.
|
Zou J L, Wu S K, Yang W X, et al. A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding[J]. Materials & Design, 2016, 89(5): 785 − 790.
|
Zhang M J, Chen G Y, Zhou Y, et al. Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate[J]. Applied Surface Science, 2013, 280(Complete): 868 − 875.
|
Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser[J]. Science & Technology of Welding & Joining, 2009, 14(4): 288 − 294.
|
Chang B H, Blackburn J, Allen C, et al. Studies on the spatter behaviour when welding AA5083 with a Yb-fibre laser[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84: 1769 − 1776. doi: 10.1007/s00170-015-7863-y
|
Nakamura H, Kawahito Y, Nishimoto K, et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Applications, 2015, 27(3): 032012. doi: 10.2351/1.4922383
|
Francisco C N, Milton P, Luiz E S P, et al. Effect of power modulation frequency on porosity formation in laser welding of SAE 1020 steels[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9): 2509 − 2517.
|
Zhang G L, Zhu B Q, Zou J L, et al. Correlation between the spatters and evaporation vapor on the front keyhole wall during fiber laser keyhole welding[J]. Journal of Materials Research and Technology, 2020, 9(6): 15143 − 15152. doi: 10.1016/j.jmrt.2020.10.103
|
[1] | XU Cheng, DONG Shihao, OU Zhengyu, HAN Zandong. Defect recognition of circumferential welds of pipelines in TOFD images based on YOLOv5[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 22-31. DOI: 10.12073/j.hjxb.20240115001 |
[2] | KONG Hua, ZHAO Zhenjia, ZOU Jianglin, WANG Zi, HUANG Zehong. The influence of laser-induced plume in the keyhole on the welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 20-26. DOI: 10.12073/j.hjxb.20220530001 |
[3] | HU Dan, LYU Bo, WANG Jingjing, GAO Xiangdong. Study on HOG-SVM detection method of weld surface defects using laser visual sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 57-62, 70. DOI: 10.12073/j.hjxb.20211231001 |
[4] | XIAO Sizhe, LIU Zhenguo, YAN Zhihong, LI Min, HUANG Jiyuan. Defect generation of small sample laser welding based on generative adversarial network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 43-48. DOI: 10.12073/j.hjxb.20220429003 |
[5] | HUANG Ruisheng, YANG Yicheng, JIANG Bao, NIE Xin, WANG Ziran. Analysis of welding characteristics of ultra-high power laser-arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 73-77,96. DOI: 10.12073/j.hjxb.2019400316 |
[6] | XU Kunshan, QIU Xingqi, JIANG Hui, WEI Renchao, ZHONG Junmin, . Analysis of magnetic memory signal of 20# steel welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 13-16,21. |
[7] | SONG Jiaqiang, XIAO Jun, ZHANG Guangjun, WU Lin. Numerical simulation of free metal transfer of low current CO2 arc welding based on Surface Evolver[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 75-78,98. |
[8] | LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96. |
[9] | WANG Ya-rong, ZHANG Zhong-dian. Defects in joint for resistance spot welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 9-12. |
[10] | Liu Dezhen, Wei Xing, Zhou Yanhua. Ultrasonic C Scanning Image of Weld Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 77-83. |
1. |
陆巍巍,陈晨曦,徐港来,葛金波,温业勇. 动力电池连接片激光焊接虚焊原因分析与改善. 机械制造文摘(焊接分册). 2024(02): 19-23 .
![]() |