Citation: | FU Chao, LU Lili, YUAN Jun, YE Yihai, HUANG Weidong. Microstructure transformation and variant selection of SLM and SLM + HT formed TA17 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 109-115. DOI: 10.12073/j.hjxb.20220908003 |
张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化工工业出版社, 2005.
Zhang Xiyan, Zhao Yongqing, Bai Chenguang. Titanium alloys and applications[M]. Beijing: Chemical Industry Press, 2005.
|
Short A B. Gas tungsten arc welding of α + β titanium alloys: a review[J]. Metal Science Journal, 2009, 25(3): 309 − 324.
|
金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25(2): 280 − 292.
Jin Hexi, Wei Kexiang, Li Jianming, et al. Research development of titanium alloy in aerospace industry[J]. The Chinses Journal of Nonferrous Metals, 2015, 25(2): 280 − 292.
|
孟圣昊, 司昌健, 任逸群, 等. 中厚板TC4钛合金真空环境激光焊接特性[J]. 焊接学报, 2021, 42(8): 40 − 48.
Meng Shenghao, Si Changjian, Ren Yiqun et al. Study on laser welding characteristics of thick wall TC4 titanium alloy in vacuum environment[J]. Transactions of the China Welding Institution, 2021, 42(8): 40 − 48.
|
习文顺, 任鑫焱, 张金元, 等. 高速列车TC4钛合金焊接构架强度及寿命评估[J]. 焊接学报, 2022, 43(5): 29 − 35.
Xi Wenshun, Ren Xinyan, Zhang Jinyuan, et al. Strength and life assessment of TC4 titanium alloy welded frame for high-speed railway vehicles[J]. Transactions of the China Welding Institution, 2022, 43(5): 29 − 35.
|
张义文. 增材制造用钛合金粉末和高温合金粉末的生产[J]. 粉末冶金工业, 2016, 26(1): 76.
Zhang Yiwen. Production of titanium alloy powder and high-temperature alloy powder for additive manufacturing[J]. Powder Metallurgy Industry, 2016, 26(1): 76.
|
魏明炜, 陈岁元, 郭快快, 等. EIGA法制备激光3D打印用TA15钛合金粉末[J]. 材料导报, 2017, 31(12): 64 − 67,78. doi: 10.11896/j.issn.1005-023X.2017.012.014
Wei Mingwei, Chen Suiyuan, Guo Kuaikuai, et al. Preparation of TA15 titanium alloy powder by EIGA for laser 3D printing[J]. Materials Reports, 2017, 31(12): 64 − 67,78. doi: 10.11896/j.issn.1005-023X.2017.012.014
|
蔡笑宇, 董博伦, 王俊哲, 等. 热处理对GTA增材制造TiAl合金组织与性能的调控[J]. 焊接学报, 2022, 43(3): 7 − 12.
Cai Xiaoyu, Dong Bolun, Wang Junzhe, et al. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. Transactions of the China Welding Institution, 2022, 43(3): 7 − 12.
|
谢波. EIGA雾化法制备激光3D打印用TC4合金粉末工艺研究[J]. 钢铁钒钛, 2019, 40(3): 7 − 12.
Xie Bo. Preparation of TC4 alloy powders used for laser 3D printing via EIGA method[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 7 − 12.
|
郭快快, 刘常升, 陈岁元, 等. 功率对EIGA制备3D打印用TC4合金粉末特性的影响[J]. 材料科学与工艺, 2017, 25(1): 16 − 22.
Guo Kuaikuai, Liu Changsheng, Chen Suiyuan, et al. Effect of EIGA power parameter on the characteristics of TC4 alloy powder for 3D printing[J]. Materials Science & Technology, 2017, 25(1): 16 − 22.
|
Dutta B, Froes F H. The additive manufacturing (AM) titanium alloys[J]. Metal Powder Report, 2017, 72(2): 96 − 106. doi: 10.1016/j.mprp.2016.12.062
|
付超, 叶义海, 陶涛, 等. EIGA法制备TA17合金粉末的激光增材适应性研究[J]. 材料科学与工艺, 2021, 29(5): 91 − 96. doi: 10.11951/j.issn.1005-0299.20200324
Fu Chao, Ye Yihai, Tao Tao, et al. Study on laser additive adaptability of TA17 titanium alloy powder prepared by EIGA method[J]. Materials Science & Technology, 2021, 29(5): 91 − 96. doi: 10.11951/j.issn.1005-0299.20200324
|
伍建文, 芦丽莉, 陶涛, 等. 退火热处理对TA17钛合金激光选区熔化成形件的力学性能影响研究[J]. 电焊机, 2021, 51(1): 111 − 114.
Wu Jianwen, Lu Lili, Tao Tao, et al. Study on the effect of annealing heat treatment on the mechanical properties of selective laser melting of TA17 titanium alloy[J]. Electric Welding Machine, 2021, 51(1): 111 − 114.
|
Zhuo L, Jing L, Zhu Y, et al. Variant selection in laser melting deposited α + β titanium alloy[J]. Journal of Alloys & Compounds, 2016, 661: 126 − 135.
|
魏子淦, 杨平. TA10钛合金相变过程中的变体选择规律[C]// 第十六届中国体视学与图像分析学术会议——交叉、融合、创新. 海口, 中国, 2019: 058018.
Wei Zigan, Yang Ping. Variant selection in the phase transformation process of TA10 titanium alloy[C]//The 16th Conference on Stereology and Image Analysis-Intersection, Fusion, and Innovation. Haikou, China, 2019: 058018.
|
Liu Q, Qiu C. Variant selection of α precipitation in a beta titanium alloy during selective laser melting and its influence on mechanical properties[J]. Materials Science & Engineering: A, 2020, 784: 139336. doi: 10.1016/j.msea.2020.139336
|
Lei L, Zhao Q Y, Cong W C, et al. Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy[J]. Journal of Materials Science & Technology, 2021, 99: 101 − 113.
|
左玉婷, 王书明, 李聪, 等. 激光增材制造钛合金织构跨尺度分析[J]. 稀有金属材料与工程, 2021, 50(4): 1365 − 1370.
Zuo Yuting, Wang Shuming, Li Cong, et al. Multi-scale texture analysis of titanium alloy made by laser additive manufacturing[J]. Rare Metal Materials and Engineering, 2021, 50(4): 1365 − 1370.
|
郑国明, 李磊, 毛小南, 等. 钛合金BCC-HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910 − 2917. doi: 10.11896/cldb.18070038
Zheng Guoming, Li Lei, Mao Xiaonan, et al. Variant selection during titanium alloy BCC-HCP phase transformation and its effect on crystal orientation[J]. Materials Reports, 2019, 33(17): 2910 − 2917. doi: 10.11896/cldb.18070038
|
Ahmed T, Rack H J. Phase transformations during cooling in α + β titanium alloys[J]. Materials Science & Engineering: A, 1998, 243(1): 206 − 211.
|
谢英杰, 付文杰, 王蕊宁, 等. 热处理对 TA15钛合金中厚板材组织及力学性能的影响[J]. 钛工业进展, 2013(6): 26 − 29.
Xie Yingjie, Fu Wenjie, Wang Ruining, et al. Effect of heat treatment on microstructure and mechanical properties of TA15 plates[J]. Titanium Industry Progress, 2013(6): 26 − 29.
|
[1] | WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001 |
[2] | GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003 |
[3] | WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001 |
[4] | ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002 |
[5] | CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001 |
[6] | BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003 |
[7] | ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001 |
[8] | YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162 |
[9] | YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205 |
[10] | CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4. |