Citation: | LI Huan, ZHANG Changxin, ZHOU Kang, CAO Biao, HUANG Chaowang. Effect of vibration amplitude on ultrasonic welding of Cu/Al[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 40-47. DOI: 10.12073/j.hjxb.20220815001 |
Hu G F, Huang P F, Bai Z H, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery[J]. eTransportation, 2021, 10(11): 100140.
|
Liu J, Cao B, Yang J W. Texture and intermetallic compounds of the Cu/Al dissimilar joints by high power ultrasonic welding[J]. Journal of Manufacturing Processes, 2022, 76(4): 34 − 45.
|
于江, 潘俊林, 苗惺林, 等. 铝/铜异种金属电阻热辅助超声波缝焊工艺特性[J]. 焊接学报, 2022, 43(7): 76 − 81. doi: 10.12073/j.hjxb.20220124001
Yu Jiang, Pan Junlin, Miao Xinglin, et al. Process characteristics of the resistance heat-assisted ultrasonic seam welding of aluminum alloy and copper dissimilar metals[J]. Transactions of the China Welding Institution, 2022, 43(7): 76 − 81. doi: 10.12073/j.hjxb.20220124001
|
Leon M D, Shin H S. Review of the advancements in aluminum and copper ultrasonic welding in electric vehicles and superconductor applications[J]. Journal of Materials Processing Technology, 2022, 307(6): 117691.
|
Yan S H, Shi Y. Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints[J]. Journal of Manufacturing Processes, 2019, 45(9): 312 − 321.
|
Das A, Masters I, Williams D. Process robustness and strength analysis of multi-layered dissimilar joints using ultrasonic metal welding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 881 − 900. doi: 10.1007/s00170-018-2936-3
|
Elkjaer A, Sorhaug J A, Ringen G, et al. Electrical and thermal stability of Al-Cu welds: Performance benchmarking of the hybrid metal extrusion and bonding process[J]. Journal of Manufacturing Processes, 2022, 79(7): 626 − 638.
|
Feng M N, Yan X, Zhao C F, et al. Microstructure and mechanical performance of ultrasonic spot welded open-cell Cu foam/Al joint[J]. Journal of Manufacturing Processes, 2018, 33(6): 86 − 95.
|
柳健, 杨景卫, 曹彪, 等. 铜/铜超声波焊接的相对运动及断面微观演变[J]. 焊接学报, 2018, 39(9): 41 − 44.
Liu Jian, Yang Jingwei, Cao Biao, et al. Relative motion and its relation to microstructure evolution during high-power ultrasonic welding of copper sheets[J]. Transactions of the China Welding Institution, 2018, 39(9): 41 − 44.
|
李东, 赵杨洋, 张延松. 焊接能量对铝/铜超声波焊接接头显微组织的影响[J]. 焊接学报, 2014, 35(2): 47 − 50.
Li Dong, Zhao Yangyang, Zhang Yansong. Effect of welding energy on microstructures of the Al /Cu joints obtained by ultrasonic welding[J]. Transactions of the China Welding Institution, 2014, 35(2): 47 − 50.
|
谷晓燕, 刘东锋, 刘婧, 等. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600 − 1607.
Gu Xiaoyan, Liu Dongfeng, Liu Jing, et al. Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1600 − 1607.
|
Cheng X M, Yang K, Wang J, et al. Ultrasonic system and ultrasonic metal welding performance: A status review[J]. Journal of Manufacturing Processes, 2022, 84(12): 1196 − 1216.
|
Kong C Y, Soar R C, Dickens P M. Characterisation of aluminium alloy 6061 for the ultrasonic consolidation process[J]. Materials Science & Engineering: A, 2003, 363(1-2): 99 − 106. doi: 10.1016/S0921-5093(03)00590-2
|
Shin H S, De Leon M. Parametric study in similar ultrasonic spot welding of A5052-H32 alloy sheets[J]. Journal of Materials Processing Technology, 2015, 224(10): 222 − 232.
|
Li H, Cao B, Liu J, et al. Modeling of high-power ultrasonic welding of Cu/Al joint[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4): 833 − 844. doi: 10.1007/s00170-018-2002-1
|
李欢. 基于数值模拟的超声焊及电阻热辅助超声焊过程研究[D]. 广州: 华南理工大学, 2018.
Li Huan. Study of the ultrasonic welding and resistance heat assisted welding process based on simulation analysis[D]. Guangzhou: South China University of Technology, 2018.
|
Wang Y X, Ao S S, Zhang W, et al. Numerical simulation of ultrasonic spot welding of superelastic NiTi alloys: Temperature distribution and deformation behavior[J]. Journal of Manufacturing Science and Engineering, 2022, 144(8): 081003. doi: 10.1115/1.4053523
|
李欢, 周亢, 曹彪, 等. 铝合金大功率超声波焊接界面及接头性能研究[J]. 机械工程学报, 2021, 57(6): 87 − 95. doi: 10.3901/JME.2021.06.087
Li Huan, Zhou Kang, Cao Biao, et al. Analysis of welding interface and joint properties of high power ultrasonic welding of aluminum alloy[J]. Journal of Mechanical Engineering, 2021, 57(6): 87 − 95. doi: 10.3901/JME.2021.06.087
|
Ni Z L, Yang J J, Gao Z T, et al. Joint formation in ultrasonic spot welding of aluminum to copper and the effect of particle interlayer[J]. Journal of Manufacturing Processes, 2020, 50(2): 57 − 67.
|
Levine L. The ultrasonic wedge bonding mechanism: Two theories converge[C]//SPIE-The International Society for Optical Engineering. Proceedings of SPIE. Austin, United States, 1995: 242 − 246.
|
Satpathy M P, Sahoo S K. Microstructural and mechanical performance of ultrasonic spot welded Al-Cu joints for various surface conditions[J]. Journal of Manufacturing Processes, 2016, 22(4): 108 − 114.
|
Ma Q C, Song C, Zhou J L, et al. Dynamic weld evolution during ultrasonic welding of Cu-Al joints[J]. Materials Science & Engineering: A, 2021, 823(8): 141724.
|
[1] | ZHAO Pengfei, WANG Xuhao, GUO Yang, WANG Ting, ZHANG Yusheng, XU Jian, MAO Guijun. Effect of welding speed on microstructure and mechanical properties of electron beam welded joints of 12Cr heat-resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 55-62. DOI: 10.12073/j.hjxb.20240507004 |
[2] | WANG Meng, ZHANG Liping, ZHAO Linyu, WU Jun, XIONG Ran, MENG Yongsheng, LI Junhong. Comparative study on the microstructure and mechanical properties of the laser welded joints of additive manufactured and forged TC11 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 102-110. DOI: 10.12073/j.hjxb.20221114001 |
[3] | WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002 |
[4] | GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004 |
[5] | ZHANG Jianxiao, GUAN Zhichen, HUANG Jiangkang, YANG Zhihai, FAN Ding. Microstructure and properties analysis of Incoloy 825 nickel base alloy electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 32-37. DOI: 10.12073/j.hjxb.20200702001 |
[6] | ZHENG Shaoxian, LI Yenan, SHI Wei, ZHAO Xilong. Microstructures and mechanical properties of welding joint of Q235/1Cr18Ni9Ti dissimilar steel with ultra-narrow-gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 38-43. DOI: 10.12073/j.hjxb.2019400206 |
[7] | LIN Panpan, LIN Tiesong, HE Peng, WANG Maochang, YANG Hangao. Microstructure and mechanical property of Al2O3/Ti joint with biocompatibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 16-23. DOI: 10.12073/j.hjxb.2019400175 |
[8] | LIU Kaixuan, SUN Zhuanping, YANG Xinqi, DU Bo, SONG Jianling. Microstructure and mechanical properties of friction plug welding for friction stir welded aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 118-125. DOI: 10.12073/j.hjxb.2019400165 |
[9] | XU Zhongfeng, LU Hao, YU Chun, YANG Yang. Microstructure and mechanical properties of 2219 aluminum alloy refilling friction stir welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 73-76. |
[10] | YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76. |
1. |
鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .
![]() |