Citation: | ZHU Qidan, WANG Yanke, ZHU Wei, LIU Yue. Intelligent recognition algorithm of welding point based on structured light[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 82-87,99. DOI: 10.12073/j.hjxb.2019400186 |
Karen Simonyan, Andrew Zisserman. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations, 2015:1− 14.
|
Christian Szegedy, Wei Liu, Yangqing Jia, et al. Going deeper with convolutions[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015:1− 9.
|
Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. Deep residual learning for image recognition[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016:770− 778.
|
Shaoqing Ren, Kaiming He, Ross Girshick, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015:1− 9.
|
Kaiming He, Georgia Gkioxari, Piotr Dollar, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2017(99):1-1.
|
Joseph Redmon, Santosh Divvala, Ross Girshick, et al. You only look once:unified, real-time object detection[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016:779− 788.
|
Tsung-Yi Lin, Piotr Dollar, Ross Girshick, et al. Feature nyramid networks for object detection[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:2117− 2125.
|
[1] | GUO Zhongfeng, LIU Junchi, YANG Junlin. Weld recognition based on key point detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 88-93. DOI: 10.12073/j.hjxb.20230204001 |
[2] | WANG Hao, ZHAO Xiaohui, XU Longzhe, JIANG Hao, LIU Yu. Research on trajectory recognition and control technology of structured light vision-assisted welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 50-57. DOI: 10.12073/j.hjxb.20220715002 |
[3] | FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002 |
[4] | GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36. |
[5] | WEN Jianli, LIU Lijun, LAN Hu. Penetration state recognition of MIG welding based on genetic wavelet neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 41-44. |
[6] | WANG Shenghua, DU Dong, ZENG Kai, ZOU Yirong. Weld recognition based on texture feature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 5-8. |
[7] | DI Xinjie, LI Wushen, BAI Shiwu, LIU Fangming. Metal magnetic memory signal recognition by neural network for welding crack[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 13-16. |
[8] | LI Guo-jin, WANG Guo-rong, ZHONG Ji-guang, SHI Yong-hua. An recognition algorithm on underwater welding seam tracking route[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 58-62. |
[9] | ZHU Zhen-you, PIAO Yong-jie, LIN Tao, CHEN Shan-ben. A LabView-based weld visual recognition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 57-60. |
[10] | Zhou Wei, Wang Chengxun. Research and Application of automatic recognition system to weld defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 45-50. |
1. |
金东升,曹文田,张英杰. 双目极线约束下的储罐环焊缝定位算法. 机械科学与技术. 2025(01): 1-8 .
![]() | |
2. |
郭忠峰,刘俊池,杨钧麟. 基于关键点检测方法的焊缝识别. 焊接学报. 2024(01): 88-93+134 .
![]() | |
3. |
成慧翔,马艳娥,李新卫. 基于改进神经网络的激光焊接偏差智能识别研究. 激光杂志. 2021(12): 165-169 .
![]() | |
4. |
寿明耀,余焕伟,诸源,余翔. 压力容器焊接智能化关键影响因子探讨. 焊接. 2020(11): 50-55+64 .
![]() |