Advanced Search
JIANG Wenchun, GU Wenbin, JIN Qiang, WANG Jinguang, WU Aibing, TU Shandong. Local post weld heat treatment method by primary and secondary distributed heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 27-35. DOI: 10.12073/j.hjxb.20220608002
Citation: JIANG Wenchun, GU Wenbin, JIN Qiang, WANG Jinguang, WU Aibing, TU Shandong. Local post weld heat treatment method by primary and secondary distributed heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 27-35. DOI: 10.12073/j.hjxb.20220608002

Local post weld heat treatment method by primary and secondary distributed heat source

More Information
  • Received Date: June 07, 2022
  • Available Online: May 12, 2023
  • Local heat treatment is an important means to ensure the safety of pressure-bearing equipment over its entire life cycle. This study takes a xylene tower segmented barrel as the research subject and proposes a novel heat treatment method by adding a secondary heating band at a certain distance from the primary heat source. The primary heating band improves the microstructure of the weld. The secondary heating band eliminates residual stresses on the internal surface of the weld and neutralizes waist-closing deformation. This research established a local heat treatment model for primary and secondary heating. Factors influencing stress relief were investigated, including the effects of temperature, band-width of the secondary heating band, spacing between the primary and secondary heating, and so on. Results show that traditional local heat treatment produces new secondary stresses on the inner surface due to the constraint effect. Primary and secondary heating distributed heat source local heat treatment can produce compressive stress on the inner surface of the weld due to reversible deformation. The width and spacing of the primary and secondary heating bands are crucial to stress relief. Engineering design methodology is proposed, shedding light on the heat treatment of extremely large pressure equipment.
  • 游敏, 郑小玲, 余海洲. 关于焊接残余应力形成机制的探讨[J]. 焊接学报, 2003, 24(2): 51 − 54,58. doi: 10.3321/j.issn:0253-360X.2003.02.014

    You Min, Zheng Xiaoling, Yu Haizhou. Discussion on forming mechanism of welding residual stress[J]. Transactions of the China Welding Institution, 2003, 24(2): 51 − 54,58. doi: 10.3321/j.issn:0253-360X.2003.02.014
    Yazdanpanah A, Franceschi M, Bergamo G, et al. On the exceptional stress corrosion cracking susceptibility of selective laser melted 316L stainless steel under the individual effect of surface residual stresses[J]. Engineering Failure Analysis, 2022, 136: 106192. doi: 10.1016/j.engfailanal.2022.106192
    张国栋, 周昌玉. 焊接残余应力对焊接接头蠕变性能的影响[J]. 焊接学报, 2007, 28(8): 99 − 102,107. doi: 10.3321/j.issn:0253-360x.2007.08.026

    Zhang Guodong, Zhou Changyu. Effect of welding residual stress on creep properties of welded joints[J]. Transactions of the China Welding Institution, 2007, 28(8): 99 − 102,107. doi: 10.3321/j.issn:0253-360x.2007.08.026
    Puliyaneth M, Chen H. Study on the effect of welding residual stress on creep-cyclic plasticity behaviour[J]. International Journal of Pressure Vessels and Piping, 2021, 193: 104444. doi: 10.1016/j.ijpvp.2021.104444
    Jiang W, Xie X, Wang T, et al. Fatigue life prediction of 316L stainless steel weld joint including the role of residual stress and its evolution: Experimental and modelling[J]. International Journal of Fatigue, 2021, 143: 105997. doi: 10.1016/j.ijfatigue.2020.105997
    Luo Y, Jiang W, Yang Z, et al. Using reinforce plate to control the residual stresses and deformation during local post-welding heat treatment for ultra-large pressure vessels[J]. International Journal of Pressure Vessels and Piping, 2021, 191: 104332. doi: 10.1016/j.ijpvp.2021.104332
    Jin Q, Jiang W, Wang C, et al. A rigid-flexible coordinated method to control weld residual stress and deformation during local PWHT for ultra-large pressure vessels[J]. International Journal of Pressure Vessels and Piping, 2021, 191: 104323. doi: 10.1016/j.ijpvp.2021.104323
    Liu M, Ni Z, Du C, et al. Failure investigation of a 304 stainless steel geothermal tube[J]. Engineering Failure Analysis, 2021, 129: 105694. doi: 10.1016/j.engfailanal.2021.105694
    Nyrkova L, Melnichuk S, Osadchuk S, et al. Investigating the mechanism of stress corrosion cracking of controllable rolling pipe steel X70 in near-neutral environment[J]. Materials Today:Proceedings, 2022, 50: 470 − 476. doi: 10.1016/j.matpr.2021.11.294
    Scott P M, Combrade P. General corrosion and stress corrosion cracking of Alloy 600 in light water reactor primary coolants[J]. Journal of Nuclear Materials, 2019, 524: 340 − 375. doi: 10.1016/j.jnucmat.2019.04.023
    Kang S S, Hwang S S, Kim H P, et al. The experience and analysis of vent pipe PWSCC (primary water stress corrosion cracking) in PWR vessel head penetration[J]. Nuclear Engineering and Design, 2014, 269: 291 − 298. doi: 10.1016/j.nucengdes.2013.08.043
    王泽军, 卢惠屏, 荆洪阳. 加热面积对球罐局部热处理应力消除效果的影响[J]. 焊接学报, 2008, 29(3): 125 − 128,159. doi: 10.3321/j.issn:0253-360X.2008.03.032

    Wang Zejun, Lu Huiping, Jing Hongyang. Effect of heating area on stress relief of local heat treatment[J]. Transactions of the China Welding Institution, 2008, 29(3): 125 − 128,159. doi: 10.3321/j.issn:0253-360X.2008.03.032
    汪建华, 陆皓, 魏良武, 等. 局部焊后热处理两类评定准则的研究[J]. 机械工程学报, 2001, 37(6): 24 − 28. doi: 10.3901/JME.2001.06.024

    Wang Jianhua, Lu Hao, Wei Liangwu, et al. Study on two types of evaluation criteria for local post weld heat treatment[J]. Journal of Mechanical Engineering, 2001, 37(6): 24 − 28. doi: 10.3901/JME.2001.06.024
    British Standard Institution. PD 5500: 2015. Specification for unfired fusion welded pressure vessels [S]. London: British Standard Institution, 2015.
    The Standards Policy and Strategy Committee. EN 13445-4: 2009 Unfired pressure vessels-Part4: Fabrication[S]. London: British Standard Institution, 2009.
    陆皓, 汪建华, 村川英一. Cr-Mo钢管子局部焊后热处理加热宽度准则的确定[J]. 焊接学报, 2006, 27(3): 5 − 8,113.

    Lu Hao, Wang Jianhua, Murakawa Y Y. Determination of Heating Width Criteria for Local Post-weld Heat Treatment of Cr-Mo Steel Pipes[J]. Transactions of the China Welding Institution, 2006, 27(3): 5 − 8,113.
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 30583-2014承压设备焊后热处理规程[S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 30583-2014 Specification for post-welding heat treatment of pressure equipment [S]. Beijing: Standards Press of China, 2014.
    蒋文春, 罗云, 万娱, 等. 焊接残余应力计算、测试与调控的研究进展[J]. 机械工程学报, 2021, 57(16): 306 − 328. doi: 10.3901/JME.2021.16.306

    Jiang Wenchun, Luo Yun, Wan Yu, et al. Research progress on calculation, measurement and control of welding residual stress[J]. Journal of Mechanical Engineering, 2021, 57(16): 306 − 328. doi: 10.3901/JME.2021.16.306
    Houman A, Anna P, Mark R, et al. Effect of holding time on strain relaxation in high-strength low-alloy steel welds: An in-situ neutron diffraction approach[J]. Journal of Manufacturing Processes, 2022, 73: 326 − 339. doi: 10.1016/j.jmapro.2021.11.005
    Liu R F, Wang J C. Application of finite element method to effect of weld overlay residual stress on probability of piping failure[J]. International Journal of Pressure Vessels and Piping, 2022, 200: 104812.
    Song W, Liu X S, Wang P, et al. Strength mismatch effect on residual stress of 10CrNi3MoV steel considering the back-chipping process[J]. International Journal of Pressure Vessels and Piping, 2022, 195: 104570. doi: 10.1016/j.ijpvp.2021.104570
    Yu B L, Wang P, Song X G, et al. The residual stress relief of post weld heat treatment in SMA490BW welded joints: Simulation and experiment[J]. International Journal of Pressure Vessels and Piping, 2022, 200: 104852. doi: 10.1016/j.ijpvp.2022.104852
    Gan Shiming, Liu Huaying, Zhai Zhiping, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55.
    Dai P, Wang Y, Li S, et al. FEM analysis of residual stress induced by repair welding in SUS304 stainless steel pipe butt-welded joint[J]. Journal of Manufacturing Processes, 2020, 58: 975 − 983. doi: 10.1016/j.jmapro.2020.09.006
  • Related Articles

    [1]WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001
    [2]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003
    [3]WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001
    [4]ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002
    [5]CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001
    [6]BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
    [7]ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001
    [8]YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
    [9]YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205
    [10]CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4.

Catalog

    Article views (262) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return