Advanced Search
Jian QIN, Jiao YANG, Weimin LONG, Sujuan ZHONG, Pan LIU, Haozhe YANG. Research progress of additive technology of diamond and its composite materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 102-112. DOI: 10.12073/j.hjxb.20220508002
Citation: Jian QIN, Jiao YANG, Weimin LONG, Sujuan ZHONG, Pan LIU, Haozhe YANG. Research progress of additive technology of diamond and its composite materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 102-112. DOI: 10.12073/j.hjxb.20220508002

Research progress of additive technology of diamond and its composite materials

More Information
  • Received Date: May 07, 2022
  • Available Online: August 02, 2022
  • Diamond has unparalleled advantages over other materials in many aspects such as hardness, heat conductivity, thermal shock resistance and strength. Since the artificial synthesis of diamond, it has been widely used in industry, and the corresponding preparation and application technologies have also been developed rapidly. The emergence of additive manufacturing technology has brought new opportunities for applications of the diamond. In this paper, the additive manufacturing technology of diamond and its composite materials is systematically described, and the mainstream additive manufacturing technology of diamond and its composite materials is introduced. The quality influencing factors of the additive manufacturing process are outlined, the main diamond and composite structures are sorted out, and the main applications of different structures and materials are summarized. Combining the development status of related technologies at home and abroad, the problems faced by the additive manufacturing technology of diamond and its composite materials are summarized, and the subsequent development suggestions are put forward in order to provide references for further research and application of diamond and its composite materials.
  • 潘红星, 范波, 闫建明, 等. CVD 法制备单晶金刚石的现状及研究进展[J]. 化工技术与开发, 2019, 48(9): 27 − 31. doi: 10.3969/j.issn.1671-9905.2019.09.009

    Pan Hongxing, Fan Bo, Yan Jianming, et al. Present situation and research progress of single crystal diamond prepared by CVD method[J]. Chemical Technology and Development, 2019, 48(9): 27 − 31. doi: 10.3969/j.issn.1671-9905.2019.09.009
    刘一波, 宋月清. 人造金刚石工具手册[M]. 北京: 冶金工业出版社, 2014.

    Liu Yibo, Song Yueqing. Manual of synthetic diamond tools [M]. Beijing: Metallurgical Industry Press, 2014.
    Artini C, Muolo M L, Passerone A. Diamond–metal interfaces in cutting tools: a review[J]. Journal of Materials Science, 2012, 47(7): 3252 − 3264. doi: 10.1007/s10853-011-6164-6
    Rahmani R, Brojan M, Antonov M, et al. Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance[J]. International Journal of Refractory Metals and Hard Materials, 2020, 88: 105192. doi: 10.1016/j.ijrmhm.2020.105192
    邹芹. 纳米金刚石结构、表面状态分析及其处理方法[D]. 秦皇岛: 燕山大学, 2004.

    Zouqin. Structure, surface state analysis and treatment methods of nano diamond [D]. Qinhuangdao: Yanshan University, 2004.
    李佳惠. 硼掺杂金刚石结构设计和耐热性研究[D]. 济南: 山东大学, 2018.

    Li Jiahui. Structural design and heat resistance of boron doped diamond [D]. Jinan: Shandong University, 2018.
    张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008.

    Zhang Qiyun, Zhuang Hongshou. Brazing manual [M]. Beijing: China Machine Press, 2008.
    Long W M. Brazing technology of super hard tools[M]. Zhengzhou: Henan Science and Technology Press, 2017.
    王小兵, 吝君瑜, 王古常, 等. MPCVD 方法制备军用光学元件纳米金刚石膜[J]. 光学技术, 2004, 30(2): 184 − 186. doi: 10.3321/j.issn:1002-1582.2004.02.024

    Wang Xiaobing, Lin Junyu, Wang Guchang, et al. Preparation of nano diamond films for military optical elements by MPCVD method[J]. Optical Technology, 2004, 30(2): 184 − 186. doi: 10.3321/j.issn:1002-1582.2004.02.024
    Ashkihazi E E, Sedov V S, Sovyk D N, et al. Plateholder design for deposition of uniform diamond coatings on WC-Co substrates by microwave plasma CVD for efficient turning application[J]. Diamond and Related Materials, 2017, 75: 169 − 175. doi: 10.1016/j.diamond.2017.04.011
    Yamanouchi K, Sakurai N, Satoh T. SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure[C]//Proceedings: IEEE Ultrasonics Symposium, IEEE, 1989: 351 − 354.
    Yang W, Auciello O, Butler J E, et al. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates[J]. Nature Materials, 2002, 1(4): 253 − 257. doi: 10.1038/nmat779
    Lloret F, Gutierrez M, Araujo D, et al. MPCVD diamond lateral growth through microterraces to reduce threading dislocations density[J]. Physica Status Solidi (a), 2017, 214(11): 1700242. doi: 10.1002/pssa.201700242
    Xu H, Zang J, Yang G, et al. High-efficiency grinding CVD diamond films by Fe-Ce containing corundum grinding wheels[J]. Diamond and Related Materials, 2017, 80: 5 − 13. doi: 10.1016/j.diamond.2017.10.002
    刘金龙, 安康, 陈良贤, 等. CVD 金刚石自支撑膜的研究进展[J]. 表面技术, 2018, 47(4): 1 − 10.

    Liu Jinlong, An Kang, Chen Liangxian, et al. Research progress of CVD diamond self-supporting films[J]. Surface Technology, 2018, 47(4): 1 − 10.
    Paprocki K, Dittmar-Wituski A, Trzciński M, et al. The comparative studies of HF CVD diamond films by Raman and XPS spectroscopies[J]. Optical Materials, 2019, 95: 109251. doi: 10.1016/j.optmat.2019.109251
    Paprocki K, Fabisiak K, Łoś S, et al. Morphological, cathodoluminescence and thermoluminescence studies of defects in diamond films grown by HF CVD technique[J]. Optical Materials, 2020, 99: 109506. doi: 10.1016/j.optmat.2019.109506
    刘鲁生, 翟朝峰, 杨兵, 等. 金刚石薄膜连续制备的热丝化学气相沉积设备研制[J]. 真空, 2020, 57(6): 1 − 4.

    Liu Lusheng, Zhai Chaofeng, Yang Bing, et al. Development of hot filament chemical vapor deposition equipment for continuous preparation of diamond films[J]. Vacuum, 2020, 57(6): 1 − 4.
    李一村, 郝晓斌, 代兵, 等. MPCVD 单晶金刚石高速率和高品质生长研究进展[J]. 人工晶体学报, 2020, 49(6): 979 − 989.

    Li Yicun, Hao Xiaobin, Dai Bing, et al. Research progress in high-speed and high-quality growth of MPCVD single crystal diamond[J]. Journal of Synthetic Crystals, 2020, 49(6): 979 − 989.
    Yang M, Bai S, Xu Q, et al. Mechanical properties of high-crystalline diamond films grown via laser MPCVD[J]. Diamond and Related Materials, 2020, 109: 108094. doi: 10.1016/j.diamond.2020.108094
    Sun Q, Zhu P, Xu Q, et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition[J]. Journal of the American Ceramic Society, 2018, 101(3): 1048 − 1057. doi: 10.1111/jace.15260
    Zhang G F, Buck V. Rapid nucleation of diamond films by pulsed laser chemical vapor deposition[J]. Applied Surface Science, 2001, 180(3-4): 255 − 260. doi: 10.1016/S0169-4332(01)00354-3
    Fan L S, Constantin L, Li D, et al. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films[J]. Light: Science & Applications, 2018, 7(4): 17177.
    Sui T, Cui Y, Lin B, et al. Influence of nanosecond laser processed surface textures on the tribological characteristics of diamond films sliding against zirconia bioceramic[J]. Ceramics International, 2018, 44(18): 23137 − 23144. doi: 10.1016/j.ceramint.2018.09.122
    司浩, 秦建, 钟素娟, 等. 钎涂技术的研究进展[J]. 材料导报, 2021, 35(z2): 333 − 340.

    Si Hao, Qin Jian, Zhong Sujuan, et al. Research progress of brazing technology[J]. Materials Reports, 2021, 35(z2): 333 − 340.
    卢金斌, 贺亚勋, 张旺玺, 等. CuSnTiNi钎料真空钎焊金刚石[J]. 焊接学报, 2017, 38(6): 125 − 128.

    Lu Jinbin, He Yaxun, Zhang Wangxi, et al. Vacuum brazing of diamond with CuSnTiNi solder[J]. Transactions of the China Welding Institution, 2017, 38(6): 125 − 128.
    王春杰. 镍基金刚石复合涂层的组织与性能研究[D]. 武汉: 湖北工业大学, 2013.

    Wang Chunjie. Study on Microstructure and properties of nickel based corundum composite coating [D]. Wuhan: Hubei University of Technology, 2013.
    Zhou Y, Wang C, Zhang F, et al. Cr powder-activated induction brazing of diamond grits with Ag–Cu–Zn alloy[J]. Materials and Manufacturing Processes, 2008, 23(4): 352 − 356. doi: 10.1080/10426910701861093
    龙伟民, 刘大双, 王博, 等. 铝微粉对大气环境感应钎涂金刚石涂层性能影响[J]. 焊接学报, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002

    Long Weimin, Liu Dashuang, Wang Bo, et al. Effect of aluminum powder on the properties of diamond coating induced brazing in atmospheric environment[J]. Transactions of the China Welding Institution, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002
    朱晨颖, 孙志鹏, 王宇. 感应钎涂金刚石/镍基合金复合涂层的性能[J]. 焊接学报, 2022, 43(2): 106 − 112. doi: 10.12073/j.hjxb.20210521003

    Zhu Chenying, Sun Zhipeng, Wang Yu. Properties of diamond / nickel base alloy composite coating by induction brazing[J]. Transactions of the China Welding Institution, 2022, 43(2): 106 − 112. doi: 10.12073/j.hjxb.20210521003
    Wang Y, Ji C, Zhou J. Experimental and numerical analysis of an improved melt-blowing slot-die[J]. E-Polymers, 2019, 19(1): 612 − 621. doi: 10.1515/epoly-2019-0065
    龙伟民, 刘大双, 张冠星, 等. 感应钎涂粉末熔融及传热机制[J]. 焊接学报, 2022, 42(11): 29 − 34.

    Long Weimin, Liu Dashuang, Zhang Guanxing, et al. Melting and heat transfer mechanism of induction brazing powder[J]. Transactions of the China Welding Institution, 2022, 42(11): 29 − 34.
    曹庆忠. 影响金刚石钎焊润湿性的因素[J]. 超硬材料工程, 2018, 30(1): 19 − 23. doi: 10.3969/j.issn.1673-1433.2018.01.005

    Cao Qingzhong. Factors affecting the wettability of diamond brazing[J]. Superhard Materials Engineering, 2018, 30(1): 19 − 23. doi: 10.3969/j.issn.1673-1433.2018.01.005
    Zhang L, Sun L, Han J, et al. Wettability optimization analysis of lead-free solders with Taguchi method[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(4): 2605 − 2608. doi: 10.1007/s10854-015-2730-z
    张亮, 孙磊, 郭永环, 等. 基于田口法的Sn-Cu-Ni-xEu无铅钎料润湿性研究[J]. 江苏大学学报(自然科学版), 2015, 36(4): 458 − 460,496.

    Zhang Liang, Sun Lei, Guo Yonghuan, et al. Study on wettability of Sn-Cu-Ni-xEu lead-free solder based on Taguchi method[J]. Journal of Jiangsu University (Natural Science Edition), 2015, 36(4): 458 − 460,496.
    秦建, 龙伟民, 路全彬, 等. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(s2): 457 − 461.

    Qin Jian, Long Weimin, Lu Quanbin, et al. Analysis of microstructure and wear resistance of diamond/NiCrBSi brazed joint[J]. Materials Reports, 2020, 34(s2): 457 − 461.
    Zhang L, Long W, Du D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125: 109032. doi: 10.1016/j.diamond.2022.109032
    Huang G, Huang J, Zhang M, et al. Fundamental aspects of ultrasonic assisted induction brazing of diamond onto 1045 steel[J]. Journal of Materials Processing Technology, 2018, 260: 123 − 136. doi: 10.1016/j.jmatprotec.2018.05.021
    Aldwell B, Yin S, McDonnell K A, et al. A novel method for metal–diamond composite coating deposition with cold spray and formation mechanism[J]. Scripta Materialia, 2016, 115: 10 − 13. doi: 10.1016/j.scriptamat.2015.12.028
    Yao J, Yang L, Li B, et al. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray[J]. Applied Surface Science, 2015, 330: 300 − 308. doi: 10.1016/j.apsusc.2015.01.029
    Yang L, Li B, Yao J, et al. Effects of diamond size on the deposition characteristic and tribological behavior of diamond/Ni60 composite coating prepared by supersonic laser deposition[J]. Diamond and Related Materials, 2015, 58: 139 − 148. doi: 10.1016/j.diamond.2015.06.014
    Long W, Liu D, Wu A, et al. Influence of laser scanning speed on the formation property of laser brazing diamond coating[J]. Diamond and Related Materials, 2020, 110: 108085. doi: 10.1016/j.diamond.2020.108085
    Long W, Liu D, Dong X, et al. Laser power effects on properties of laser brazing diamond coating[J]. Surface Engineering, 2020, 36(12): 1315 − 1326. doi: 10.1080/02670844.2020.1758292
    Rashed M G, Ashraf M, Mines R A W, et al. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications[J]. Materials & Design, 2016, 95: 518 − 533.
    Mour M, Das D, Winkler T, et al. Advances in porous biomaterials for dental and orthopaedic applications[J]. Materials, 2010, 3(5): 2947 − 2974. doi: 10.3390/ma3052947
    Warnke P H, Douglas T, Wollny P, et al. Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering[J]. Tissue Engineering, Part C. Methods, 2009, 15(2): 115 − 124. doi: 10.1089/ten.tec.2008.0288
    Rifai A, Tran N, Lau D W, et al. Polycrystalline diamond coating of additively manufactured titanium for biomedical applications[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8474 − 8484.
    张俊涛, 黄淼俊, 胡子健, 等. 选区激光熔化制备金刚石/TC4复合材料的成型工艺及性能分析[J]. 机电信息, 2021(15): 46 − 49. doi: 10.3969/j.issn.1671-0797.2021.15.019

    Zhang Juntao, Huang Miaojun, Hu Zijian, et al. Forming process and performance analysis of diamond/TC4 composites prepared by selective laser melting[J]. Mechanical and Electrical Information, 2021(15): 46 − 49. doi: 10.3969/j.issn.1671-0797.2021.15.019
    Fox K, Mani N, Rifai A, et al. 3D-printed diamond–titanium composite: A hybrid material for implant engineering[J]. ACS Applied Bio Materials, 2019, 3(1): 29 − 36.
    Mani N, Ahnood A, Peng D, et al. Single-step fabrication method toward 3D printing composite diamond–titanium interfaces for neural applications[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31474 − 31484.
    Houshyar S, Kumar G S, Rifai A, et al. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management[J]. Materials Science and Engineering:C, 2019, 100: 378 − 387.
    Rifai A, Tran N, Reineck P, et al. Engineering the interface: nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24588 − 24597.
    张帆. 新型纳米金刚石-PLGA可吸收复合材料3D打印制备颈椎间融合器的研究[D]. 上海: 中国人民解放军第二军医大学, 2015.

    Zhang Fan. Research on the preparation of cervical interbody fusion cage by 3D printing of a new nano diamond PLGA absorbable composite [D]. Shanghai: The Second Military Medical University, 2015.
    张云鹤, 黄景銮, 宋运运, 等. 3D 打印金刚石工具的研究进展[J]. 金刚石与磨料磨具工程, 2021, 41(3): 40 − 47.

    Zhang Yunhe, Huang Jingluan, Song Yunyun, et al. Research progress of 3D printing diamond tools[J]. Diamond & Abrasives Engineering, 2021, 41(3): 40 − 47.
    Tian C, Li X, Li H, et al. The effect of porosity on the mechanical property of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM)[J]. Materials Science and Engineering:A, 2019, 743: 697 − 706. doi: 10.1016/j.msea.2018.11.138
    张绍和, 唐健, 周侯, 等. 3D 打印技术在金刚石工具制造中的应用探讨[J]. 金刚石与磨料磨具工程, 2018, 38(2): 51 − 56.

    Zhang Shaohe, Tang Jian, Zhou Hou, et al. Discussion on the application of 3D printing technology in diamond tool manufacturing[J]. Diamond & Abrasives Engineering, 2018, 38(2): 51 − 56.
    Yang Z, Zhang M, Zhang Z, et al. A study on diamond grinding wheels with regular grain distribution using additive manufacturing (AM) technology[J]. Materials & Design, 2016, 104: 292 − 297.
    谭敏. 超高频感应钎焊金刚石砂轮[D]. 南京: 南京航空航天大学, 2013.

    Tan Min. Ultra high frequency induction brazing diamond grinding wheel [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    Du Z, Zhang F, Xu Q, et al. Selective laser sintering and grinding performance of resin bond diamond grinding wheels with arrayed internal cooling holes[J]. Ceramics International, 2019, 45(16): 20873 − 20881. doi: 10.1016/j.ceramint.2019.07.076
    Tian C, Li X, Chen Z, et al. Study on formability, mechanical property and finite element modeling of 3D-printed composite for metal-bonded diamond grinding wheel application[J]. Journal of Manufacturing Processes, 2020, 54: 38 − 47. doi: 10.1016/j.jmapro.2020.02.028
    Fang X, Yang Z, Tan S, et al. Feasibility study of selective laser melting for metal matrix diamond tools[J]. Crystals, 2020, 10(7): 596. doi: 10.3390/cryst10070596
    Su Z, Zhang S, Liu L, et al. Microstructure and performance characterization of Co-based diamond composites fabricated via fused deposition molding and sintering[J]. Journal of Alloys and Compounds, 2021, 871: 159569. doi: 10.1016/j.jallcom.2021.159569
    张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势[J]. 中国材料进展, 2018, 37(12): 994 − 1001, 1047. doi: 10.7502/j.issn.1674-3962.2018.12.06

    Zhang Di, Tan Zhanqiu, Xiong Dingbang, et al. Application status and development trend of metal matrix composites for thermal management[J]. Materials China, 2018, 37(12): 994 − 1001, 1047. doi: 10.7502/j.issn.1674-3962.2018.12.06
    Bai H, Ma N, Lang J, et al. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder[J]. Composites Part B:Engineering, 2013, 52: 182 − 186. doi: 10.1016/j.compositesb.2013.04.017
    Bai H, Ma N, Lang J, et al. Effect of a new pretreatment on the microstructure and thermal conductivity of Cu/diamond composites[J]. Journal of Alloys and Compounds, 2013, 580: 382 − 385. doi: 10.1016/j.jallcom.2013.06.027
    Zhang C, Wang R, Cai Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J]. Surface and Coatings Technology, 2015, 277: 299 − 307. doi: 10.1016/j.surfcoat.2015.07.059
    Wang L, Li J, Bai G, et al. Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration[J]. Journal of Alloys and Compounds, 2019, 781: 800 − 809. doi: 10.1016/j.jallcom.2018.12.053
    Grzonka J, Kruszewski M J, Rosiński M, et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route[J]. Materials Characterization, 2015, 99: 188 − 194. doi: 10.1016/j.matchar.2014.11.032
    Constantin L, Fan L, Pontoreau M, et al. Additive manufacturing of copper/diamond composites for thermal management applications[J]. Manufacturing Letters, 2020, 24: 61 − 66. doi: 10.1016/j.mfglet.2020.03.014
    Constantin L, Kraiem N, Wu Z, et al. Manufacturing of complex diamond-based composite structures via laser powder-bed fusion[J]. Additive Manufacturing, 2021, 40: 101927. doi: 10.1016/j.addma.2021.101927
    Guo Wei, Cai Yan. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10.
    Cui Bing, Liu Zhengwei, Ding Zichao. Research progress of nickel based filler for development of diamond tools[J]. China Welding, 2021, 30(4): 30 − 41.
  • Related Articles

    [1]LONG Weimin, QIAO Ruilin, QIN Jian, SONG Xiaoguo, LI Pengyuan, FAN Xigang, LIU Daijun. Research progress in dissimilar material brazing technology and applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 1-21. DOI: 10.12073/j.hjxb.20240126001
    [2]QIN Jian, LONG Weimin, WEI Shizhong, WU Hanqi, FAN Xigang, WEI Yongqiang, WANG Zidong. Analysis of the formation behavior and mechanisms of diamond coatings through laser brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 50-58. DOI: 10.12073/j.hjxb.20230719001
    [3]ZHU Chenying, SUN Zhipeng, WANG Yu. Properties of induction brazing diamond/Ni-based alloy composite coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 106-112. DOI: 10.12073/j.hjxb.20210521003
    [4]SHU Fengyuan, NIU Sicheng, HE Peng, SUI Shaohua, ZHANG Xiaodong. Research progress of high-entropy amorphous materials and their additive manufacturing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 1-8. DOI: 10.12073/j.hjxb.20201203001
    [5]LU Jinbin, HE Yaxun, ZHANG Wangxi, LI Hua, ZHAO Bin, YIN Zhen, MA Jia. Analysis on vacuum brazing diamond using CuSnTiNi[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 125-128.
    [6]YANG Zhibo, XU Jiuhua, LIU Aiju. Analysis on interfacial microstructure of laser brazing diamond grits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 9-12.
    [7]SUN Feng-lian, ZHAO Mi, LI Dan, GU Feng. Interfacial reaction layers and microstructure of brazed joint of CVD diamond film[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 70-72.
    [8]MA Bo-jiang, XU Hong-jun, FU Yu-can, XIAO Bing, XU Jiu-hua. Interfacial characteristics of diamond brazed by high-frequency induction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 50-54.
    [9]WU Zhi-bin, XU Hong-jun, XIAO Bing. Experimental Investigation on Induction Brazing of Diamond Grinding Wheel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 24-26.
    [10]Sun Fenglian, Yu Yandong, Sun Pingzhong, Zhang Jie, Zhang Jiuhai, Xu Yonghua. Solid-state Bonding of Diamond to Co-Si Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 177-181.
  • Cited by

    Periodical cited type(7)

    1. 王辉,贺卫卫,程康康,李会霞,赵培,王新锋,王宇. 增材制造金刚石颗粒增强金属基复合材料研究进展. 航空材料学报. 2025(02): 18-27 .
    2. 秦建,龙伟民,魏世忠,武汉琦,樊喜刚,魏永强,王自东. 激光钎涂金刚石的涂层形成行为及其机理分析. 焊接学报. 2024(10): 50-58 . 本站查看
    3. 丁远强. 基于声音识别技术的增材制造过程质量预测技术研究. 电声技术. 2024(10): 194-196 .
    4. 孙逸翔,秦建,张雷,井培尧,刘晟,王威,周立涛. Ni60激光熔覆涂层成形行为与微观组织分析. 电焊机. 2024(11): 44-49 .
    5. 魏瑛康,李嘉旭,王岩,王建勇,张亮亮,武玺旺,刘世锋. 增材制造技术在金刚石工具制备中的应用研究进展. 粉末冶金技术. 2024(06): 652-664+673 .
    6. 吴奇隆,董显,张雷,钟素娟,陈治强,贾连辉,罗灵杰. WC对感应钎涂金刚石涂层组织及性能的影响. 金刚石与磨料磨具工程. 2023(05): 579-585 .
    7. 朱宇辰,龙伟民,魏世忠,郭鹏,武汉琦,樊喜刚,魏永强. Phase field simulation of grain refinement in silver-based filler metal. China Welding. 2023(04): 49-54 .

    Other cited types(5)

Catalog

    Article views (479) PDF downloads (93) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return