Citation: | Jian QIN, Jiao YANG, Weimin LONG, Sujuan ZHONG, Pan LIU, Haozhe YANG. Research progress of additive technology of diamond and its composite materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 102-112. DOI: 10.12073/j.hjxb.20220508002 |
潘红星, 范波, 闫建明, 等. CVD 法制备单晶金刚石的现状及研究进展[J]. 化工技术与开发, 2019, 48(9): 27 − 31. doi: 10.3969/j.issn.1671-9905.2019.09.009
Pan Hongxing, Fan Bo, Yan Jianming, et al. Present situation and research progress of single crystal diamond prepared by CVD method[J]. Chemical Technology and Development, 2019, 48(9): 27 − 31. doi: 10.3969/j.issn.1671-9905.2019.09.009
|
刘一波, 宋月清. 人造金刚石工具手册[M]. 北京: 冶金工业出版社, 2014.
Liu Yibo, Song Yueqing. Manual of synthetic diamond tools [M]. Beijing: Metallurgical Industry Press, 2014.
|
Artini C, Muolo M L, Passerone A. Diamond–metal interfaces in cutting tools: a review[J]. Journal of Materials Science, 2012, 47(7): 3252 − 3264. doi: 10.1007/s10853-011-6164-6
|
Rahmani R, Brojan M, Antonov M, et al. Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance[J]. International Journal of Refractory Metals and Hard Materials, 2020, 88: 105192. doi: 10.1016/j.ijrmhm.2020.105192
|
邹芹. 纳米金刚石结构、表面状态分析及其处理方法[D]. 秦皇岛: 燕山大学, 2004.
Zouqin. Structure, surface state analysis and treatment methods of nano diamond [D]. Qinhuangdao: Yanshan University, 2004.
|
李佳惠. 硼掺杂金刚石结构设计和耐热性研究[D]. 济南: 山东大学, 2018.
Li Jiahui. Structural design and heat resistance of boron doped diamond [D]. Jinan: Shandong University, 2018.
|
张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008.
Zhang Qiyun, Zhuang Hongshou. Brazing manual [M]. Beijing: China Machine Press, 2008.
|
Long W M. Brazing technology of super hard tools[M]. Zhengzhou: Henan Science and Technology Press, 2017.
|
王小兵, 吝君瑜, 王古常, 等. MPCVD 方法制备军用光学元件纳米金刚石膜[J]. 光学技术, 2004, 30(2): 184 − 186. doi: 10.3321/j.issn:1002-1582.2004.02.024
Wang Xiaobing, Lin Junyu, Wang Guchang, et al. Preparation of nano diamond films for military optical elements by MPCVD method[J]. Optical Technology, 2004, 30(2): 184 − 186. doi: 10.3321/j.issn:1002-1582.2004.02.024
|
Ashkihazi E E, Sedov V S, Sovyk D N, et al. Plateholder design for deposition of uniform diamond coatings on WC-Co substrates by microwave plasma CVD for efficient turning application[J]. Diamond and Related Materials, 2017, 75: 169 − 175. doi: 10.1016/j.diamond.2017.04.011
|
Yamanouchi K, Sakurai N, Satoh T. SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure[C]//Proceedings: IEEE Ultrasonics Symposium, IEEE, 1989: 351 − 354.
|
Yang W, Auciello O, Butler J E, et al. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates[J]. Nature Materials, 2002, 1(4): 253 − 257. doi: 10.1038/nmat779
|
Lloret F, Gutierrez M, Araujo D, et al. MPCVD diamond lateral growth through microterraces to reduce threading dislocations density[J]. Physica Status Solidi (a), 2017, 214(11): 1700242. doi: 10.1002/pssa.201700242
|
Xu H, Zang J, Yang G, et al. High-efficiency grinding CVD diamond films by Fe-Ce containing corundum grinding wheels[J]. Diamond and Related Materials, 2017, 80: 5 − 13. doi: 10.1016/j.diamond.2017.10.002
|
刘金龙, 安康, 陈良贤, 等. CVD 金刚石自支撑膜的研究进展[J]. 表面技术, 2018, 47(4): 1 − 10.
Liu Jinlong, An Kang, Chen Liangxian, et al. Research progress of CVD diamond self-supporting films[J]. Surface Technology, 2018, 47(4): 1 − 10.
|
Paprocki K, Dittmar-Wituski A, Trzciński M, et al. The comparative studies of HF CVD diamond films by Raman and XPS spectroscopies[J]. Optical Materials, 2019, 95: 109251. doi: 10.1016/j.optmat.2019.109251
|
Paprocki K, Fabisiak K, Łoś S, et al. Morphological, cathodoluminescence and thermoluminescence studies of defects in diamond films grown by HF CVD technique[J]. Optical Materials, 2020, 99: 109506. doi: 10.1016/j.optmat.2019.109506
|
刘鲁生, 翟朝峰, 杨兵, 等. 金刚石薄膜连续制备的热丝化学气相沉积设备研制[J]. 真空, 2020, 57(6): 1 − 4.
Liu Lusheng, Zhai Chaofeng, Yang Bing, et al. Development of hot filament chemical vapor deposition equipment for continuous preparation of diamond films[J]. Vacuum, 2020, 57(6): 1 − 4.
|
李一村, 郝晓斌, 代兵, 等. MPCVD 单晶金刚石高速率和高品质生长研究进展[J]. 人工晶体学报, 2020, 49(6): 979 − 989.
Li Yicun, Hao Xiaobin, Dai Bing, et al. Research progress in high-speed and high-quality growth of MPCVD single crystal diamond[J]. Journal of Synthetic Crystals, 2020, 49(6): 979 − 989.
|
Yang M, Bai S, Xu Q, et al. Mechanical properties of high-crystalline diamond films grown via laser MPCVD[J]. Diamond and Related Materials, 2020, 109: 108094. doi: 10.1016/j.diamond.2020.108094
|
Sun Q, Zhu P, Xu Q, et al. High-speed heteroepitaxial growth of 3C-SiC (111) thick films on Si (110) by laser chemical vapor deposition[J]. Journal of the American Ceramic Society, 2018, 101(3): 1048 − 1057. doi: 10.1111/jace.15260
|
Zhang G F, Buck V. Rapid nucleation of diamond films by pulsed laser chemical vapor deposition[J]. Applied Surface Science, 2001, 180(3-4): 255 − 260. doi: 10.1016/S0169-4332(01)00354-3
|
Fan L S, Constantin L, Li D, et al. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films[J]. Light: Science & Applications, 2018, 7(4): 17177.
|
Sui T, Cui Y, Lin B, et al. Influence of nanosecond laser processed surface textures on the tribological characteristics of diamond films sliding against zirconia bioceramic[J]. Ceramics International, 2018, 44(18): 23137 − 23144. doi: 10.1016/j.ceramint.2018.09.122
|
司浩, 秦建, 钟素娟, 等. 钎涂技术的研究进展[J]. 材料导报, 2021, 35(z2): 333 − 340.
Si Hao, Qin Jian, Zhong Sujuan, et al. Research progress of brazing technology[J]. Materials Reports, 2021, 35(z2): 333 − 340.
|
卢金斌, 贺亚勋, 张旺玺, 等. CuSnTiNi钎料真空钎焊金刚石[J]. 焊接学报, 2017, 38(6): 125 − 128.
Lu Jinbin, He Yaxun, Zhang Wangxi, et al. Vacuum brazing of diamond with CuSnTiNi solder[J]. Transactions of the China Welding Institution, 2017, 38(6): 125 − 128.
|
王春杰. 镍基金刚石复合涂层的组织与性能研究[D]. 武汉: 湖北工业大学, 2013.
Wang Chunjie. Study on Microstructure and properties of nickel based corundum composite coating [D]. Wuhan: Hubei University of Technology, 2013.
|
Zhou Y, Wang C, Zhang F, et al. Cr powder-activated induction brazing of diamond grits with Ag–Cu–Zn alloy[J]. Materials and Manufacturing Processes, 2008, 23(4): 352 − 356. doi: 10.1080/10426910701861093
|
龙伟民, 刘大双, 王博, 等. 铝微粉对大气环境感应钎涂金刚石涂层性能影响[J]. 焊接学报, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002
Long Weimin, Liu Dashuang, Wang Bo, et al. Effect of aluminum powder on the properties of diamond coating induced brazing in atmospheric environment[J]. Transactions of the China Welding Institution, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002
|
朱晨颖, 孙志鹏, 王宇. 感应钎涂金刚石/镍基合金复合涂层的性能[J]. 焊接学报, 2022, 43(2): 106 − 112. doi: 10.12073/j.hjxb.20210521003
Zhu Chenying, Sun Zhipeng, Wang Yu. Properties of diamond / nickel base alloy composite coating by induction brazing[J]. Transactions of the China Welding Institution, 2022, 43(2): 106 − 112. doi: 10.12073/j.hjxb.20210521003
|
Wang Y, Ji C, Zhou J. Experimental and numerical analysis of an improved melt-blowing slot-die[J]. E-Polymers, 2019, 19(1): 612 − 621. doi: 10.1515/epoly-2019-0065
|
龙伟民, 刘大双, 张冠星, 等. 感应钎涂粉末熔融及传热机制[J]. 焊接学报, 2022, 42(11): 29 − 34.
Long Weimin, Liu Dashuang, Zhang Guanxing, et al. Melting and heat transfer mechanism of induction brazing powder[J]. Transactions of the China Welding Institution, 2022, 42(11): 29 − 34.
|
曹庆忠. 影响金刚石钎焊润湿性的因素[J]. 超硬材料工程, 2018, 30(1): 19 − 23. doi: 10.3969/j.issn.1673-1433.2018.01.005
Cao Qingzhong. Factors affecting the wettability of diamond brazing[J]. Superhard Materials Engineering, 2018, 30(1): 19 − 23. doi: 10.3969/j.issn.1673-1433.2018.01.005
|
Zhang L, Sun L, Han J, et al. Wettability optimization analysis of lead-free solders with Taguchi method[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(4): 2605 − 2608. doi: 10.1007/s10854-015-2730-z
|
张亮, 孙磊, 郭永环, 等. 基于田口法的Sn-Cu-Ni-xEu无铅钎料润湿性研究[J]. 江苏大学学报(自然科学版), 2015, 36(4): 458 − 460,496.
Zhang Liang, Sun Lei, Guo Yonghuan, et al. Study on wettability of Sn-Cu-Ni-xEu lead-free solder based on Taguchi method[J]. Journal of Jiangsu University (Natural Science Edition), 2015, 36(4): 458 − 460,496.
|
秦建, 龙伟民, 路全彬, 等. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(s2): 457 − 461.
Qin Jian, Long Weimin, Lu Quanbin, et al. Analysis of microstructure and wear resistance of diamond/NiCrBSi brazed joint[J]. Materials Reports, 2020, 34(s2): 457 − 461.
|
Zhang L, Long W, Du D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125: 109032. doi: 10.1016/j.diamond.2022.109032
|
Huang G, Huang J, Zhang M, et al. Fundamental aspects of ultrasonic assisted induction brazing of diamond onto 1045 steel[J]. Journal of Materials Processing Technology, 2018, 260: 123 − 136. doi: 10.1016/j.jmatprotec.2018.05.021
|
Aldwell B, Yin S, McDonnell K A, et al. A novel method for metal–diamond composite coating deposition with cold spray and formation mechanism[J]. Scripta Materialia, 2016, 115: 10 − 13. doi: 10.1016/j.scriptamat.2015.12.028
|
Yao J, Yang L, Li B, et al. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray[J]. Applied Surface Science, 2015, 330: 300 − 308. doi: 10.1016/j.apsusc.2015.01.029
|
Yang L, Li B, Yao J, et al. Effects of diamond size on the deposition characteristic and tribological behavior of diamond/Ni60 composite coating prepared by supersonic laser deposition[J]. Diamond and Related Materials, 2015, 58: 139 − 148. doi: 10.1016/j.diamond.2015.06.014
|
Long W, Liu D, Wu A, et al. Influence of laser scanning speed on the formation property of laser brazing diamond coating[J]. Diamond and Related Materials, 2020, 110: 108085. doi: 10.1016/j.diamond.2020.108085
|
Long W, Liu D, Dong X, et al. Laser power effects on properties of laser brazing diamond coating[J]. Surface Engineering, 2020, 36(12): 1315 − 1326. doi: 10.1080/02670844.2020.1758292
|
Rashed M G, Ashraf M, Mines R A W, et al. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications[J]. Materials & Design, 2016, 95: 518 − 533.
|
Mour M, Das D, Winkler T, et al. Advances in porous biomaterials for dental and orthopaedic applications[J]. Materials, 2010, 3(5): 2947 − 2974. doi: 10.3390/ma3052947
|
Warnke P H, Douglas T, Wollny P, et al. Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering[J]. Tissue Engineering, Part C. Methods, 2009, 15(2): 115 − 124. doi: 10.1089/ten.tec.2008.0288
|
Rifai A, Tran N, Lau D W, et al. Polycrystalline diamond coating of additively manufactured titanium for biomedical applications[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8474 − 8484.
|
张俊涛, 黄淼俊, 胡子健, 等. 选区激光熔化制备金刚石/TC4复合材料的成型工艺及性能分析[J]. 机电信息, 2021(15): 46 − 49. doi: 10.3969/j.issn.1671-0797.2021.15.019
Zhang Juntao, Huang Miaojun, Hu Zijian, et al. Forming process and performance analysis of diamond/TC4 composites prepared by selective laser melting[J]. Mechanical and Electrical Information, 2021(15): 46 − 49. doi: 10.3969/j.issn.1671-0797.2021.15.019
|
Fox K, Mani N, Rifai A, et al. 3D-printed diamond–titanium composite: A hybrid material for implant engineering[J]. ACS Applied Bio Materials, 2019, 3(1): 29 − 36.
|
Mani N, Ahnood A, Peng D, et al. Single-step fabrication method toward 3D printing composite diamond–titanium interfaces for neural applications[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31474 − 31484.
|
Houshyar S, Kumar G S, Rifai A, et al. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management[J]. Materials Science and Engineering:C, 2019, 100: 378 − 387.
|
Rifai A, Tran N, Reineck P, et al. Engineering the interface: nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24588 − 24597.
|
张帆. 新型纳米金刚石-PLGA可吸收复合材料3D打印制备颈椎间融合器的研究[D]. 上海: 中国人民解放军第二军医大学, 2015.
Zhang Fan. Research on the preparation of cervical interbody fusion cage by 3D printing of a new nano diamond PLGA absorbable composite [D]. Shanghai: The Second Military Medical University, 2015.
|
张云鹤, 黄景銮, 宋运运, 等. 3D 打印金刚石工具的研究进展[J]. 金刚石与磨料磨具工程, 2021, 41(3): 40 − 47.
Zhang Yunhe, Huang Jingluan, Song Yunyun, et al. Research progress of 3D printing diamond tools[J]. Diamond & Abrasives Engineering, 2021, 41(3): 40 − 47.
|
Tian C, Li X, Li H, et al. The effect of porosity on the mechanical property of metal-bonded diamond grinding wheel fabricated by selective laser melting (SLM)[J]. Materials Science and Engineering:A, 2019, 743: 697 − 706. doi: 10.1016/j.msea.2018.11.138
|
张绍和, 唐健, 周侯, 等. 3D 打印技术在金刚石工具制造中的应用探讨[J]. 金刚石与磨料磨具工程, 2018, 38(2): 51 − 56.
Zhang Shaohe, Tang Jian, Zhou Hou, et al. Discussion on the application of 3D printing technology in diamond tool manufacturing[J]. Diamond & Abrasives Engineering, 2018, 38(2): 51 − 56.
|
Yang Z, Zhang M, Zhang Z, et al. A study on diamond grinding wheels with regular grain distribution using additive manufacturing (AM) technology[J]. Materials & Design, 2016, 104: 292 − 297.
|
谭敏. 超高频感应钎焊金刚石砂轮[D]. 南京: 南京航空航天大学, 2013.
Tan Min. Ultra high frequency induction brazing diamond grinding wheel [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
|
Du Z, Zhang F, Xu Q, et al. Selective laser sintering and grinding performance of resin bond diamond grinding wheels with arrayed internal cooling holes[J]. Ceramics International, 2019, 45(16): 20873 − 20881. doi: 10.1016/j.ceramint.2019.07.076
|
Tian C, Li X, Chen Z, et al. Study on formability, mechanical property and finite element modeling of 3D-printed composite for metal-bonded diamond grinding wheel application[J]. Journal of Manufacturing Processes, 2020, 54: 38 − 47. doi: 10.1016/j.jmapro.2020.02.028
|
Fang X, Yang Z, Tan S, et al. Feasibility study of selective laser melting for metal matrix diamond tools[J]. Crystals, 2020, 10(7): 596. doi: 10.3390/cryst10070596
|
Su Z, Zhang S, Liu L, et al. Microstructure and performance characterization of Co-based diamond composites fabricated via fused deposition molding and sintering[J]. Journal of Alloys and Compounds, 2021, 871: 159569. doi: 10.1016/j.jallcom.2021.159569
|
张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势[J]. 中国材料进展, 2018, 37(12): 994 − 1001, 1047. doi: 10.7502/j.issn.1674-3962.2018.12.06
Zhang Di, Tan Zhanqiu, Xiong Dingbang, et al. Application status and development trend of metal matrix composites for thermal management[J]. Materials China, 2018, 37(12): 994 − 1001, 1047. doi: 10.7502/j.issn.1674-3962.2018.12.06
|
Bai H, Ma N, Lang J, et al. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder[J]. Composites Part B:Engineering, 2013, 52: 182 − 186. doi: 10.1016/j.compositesb.2013.04.017
|
Bai H, Ma N, Lang J, et al. Effect of a new pretreatment on the microstructure and thermal conductivity of Cu/diamond composites[J]. Journal of Alloys and Compounds, 2013, 580: 382 − 385. doi: 10.1016/j.jallcom.2013.06.027
|
Zhang C, Wang R, Cai Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J]. Surface and Coatings Technology, 2015, 277: 299 − 307. doi: 10.1016/j.surfcoat.2015.07.059
|
Wang L, Li J, Bai G, et al. Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration[J]. Journal of Alloys and Compounds, 2019, 781: 800 − 809. doi: 10.1016/j.jallcom.2018.12.053
|
Grzonka J, Kruszewski M J, Rosiński M, et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route[J]. Materials Characterization, 2015, 99: 188 − 194. doi: 10.1016/j.matchar.2014.11.032
|
Constantin L, Fan L, Pontoreau M, et al. Additive manufacturing of copper/diamond composites for thermal management applications[J]. Manufacturing Letters, 2020, 24: 61 − 66. doi: 10.1016/j.mfglet.2020.03.014
|
Constantin L, Kraiem N, Wu Z, et al. Manufacturing of complex diamond-based composite structures via laser powder-bed fusion[J]. Additive Manufacturing, 2021, 40: 101927. doi: 10.1016/j.addma.2021.101927
|
Guo Wei, Cai Yan. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10.
|
Cui Bing, Liu Zhengwei, Ding Zichao. Research progress of nickel based filler for development of diamond tools[J]. China Welding, 2021, 30(4): 30 − 41.
|
[1] | LONG Weimin, QIAO Ruilin, QIN Jian, SONG Xiaoguo, LI Pengyuan, FAN Xigang, LIU Daijun. Research progress in dissimilar material brazing technology and applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 1-21. DOI: 10.12073/j.hjxb.20240126001 |
[2] | QIN Jian, LONG Weimin, WEI Shizhong, WU Hanqi, FAN Xigang, WEI Yongqiang, WANG Zidong. Analysis of the formation behavior and mechanisms of diamond coatings through laser brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 50-58. DOI: 10.12073/j.hjxb.20230719001 |
[3] | ZHU Chenying, SUN Zhipeng, WANG Yu. Properties of induction brazing diamond/Ni-based alloy composite coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 106-112. DOI: 10.12073/j.hjxb.20210521003 |
[4] | SHU Fengyuan, NIU Sicheng, HE Peng, SUI Shaohua, ZHANG Xiaodong. Research progress of high-entropy amorphous materials and their additive manufacturing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 1-8. DOI: 10.12073/j.hjxb.20201203001 |
[5] | LU Jinbin, HE Yaxun, ZHANG Wangxi, LI Hua, ZHAO Bin, YIN Zhen, MA Jia. Analysis on vacuum brazing diamond using CuSnTiNi[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 125-128. |
[6] | YANG Zhibo, XU Jiuhua, LIU Aiju. Analysis on interfacial microstructure of laser brazing diamond grits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 9-12. |
[7] | SUN Feng-lian, ZHAO Mi, LI Dan, GU Feng. Interfacial reaction layers and microstructure of brazed joint of CVD diamond film[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 70-72. |
[8] | MA Bo-jiang, XU Hong-jun, FU Yu-can, XIAO Bing, XU Jiu-hua. Interfacial characteristics of diamond brazed by high-frequency induction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 50-54. |
[9] | WU Zhi-bin, XU Hong-jun, XIAO Bing. Experimental Investigation on Induction Brazing of Diamond Grinding Wheel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 24-26. |
[10] | Sun Fenglian, Yu Yandong, Sun Pingzhong, Zhang Jie, Zhang Jiuhai, Xu Yonghua. Solid-state Bonding of Diamond to Co-Si Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (3): 177-181. |
1. |
王辉,贺卫卫,程康康,李会霞,赵培,王新锋,王宇. 增材制造金刚石颗粒增强金属基复合材料研究进展. 航空材料学报. 2025(02): 18-27 .
![]() | |
2. |
秦建,龙伟民,魏世忠,武汉琦,樊喜刚,魏永强,王自东. 激光钎涂金刚石的涂层形成行为及其机理分析. 焊接学报. 2024(10): 50-58 .
![]() | |
3. |
丁远强. 基于声音识别技术的增材制造过程质量预测技术研究. 电声技术. 2024(10): 194-196 .
![]() | |
4. |
孙逸翔,秦建,张雷,井培尧,刘晟,王威,周立涛. Ni60激光熔覆涂层成形行为与微观组织分析. 电焊机. 2024(11): 44-49 .
![]() | |
5. |
魏瑛康,李嘉旭,王岩,王建勇,张亮亮,武玺旺,刘世锋. 增材制造技术在金刚石工具制备中的应用研究进展. 粉末冶金技术. 2024(06): 652-664+673 .
![]() | |
6. |
吴奇隆,董显,张雷,钟素娟,陈治强,贾连辉,罗灵杰. WC对感应钎涂金刚石涂层组织及性能的影响. 金刚石与磨料磨具工程. 2023(05): 579-585 .
![]() | |
7. |
朱宇辰,龙伟民,魏世忠,郭鹏,武汉琦,樊喜刚,魏永强. Phase field simulation of grain refinement in silver-based filler metal. China Welding. 2023(04): 49-54 .
![]() |