Citation: | Yongqiang YANG, Yaling WEN, Di WANG, Heng ZHOU, Zengqiang NIU, Tongjie LU. Process and performance of pure copper parts formed by blue laser directed energy depostion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 80-86. DOI: 10.12073/j.hjxb.20220427002 |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133 − 164. doi: 10.1179/1743280411Y.0000000014
|
Vilar R. Laser cladding[J]. Journal of Laser Applications, 1999, 11(2): 64 − 79. doi: 10.2351/1.521888
|
Santo L, Quadrini F, Bellisario D, et al. Local density measurement of additive manufactured copper parts by instrumented indentation[C]// AIP Conference Proceedings. AIP Publishing LLC, 2018: 100014.
|
Ikeshoji T T, Nakamura K, Yonehara M, et al. Selective laser melting of pure copper[J]. Jom, 2018, 70(3): 396 − 400. doi: 10.1007/s11837-017-2695-x
|
Colopi M, Demir A G, Caprio L, et al. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2473 − 2486.
|
Spisz E W. Solar absorptances and spectral reflectances of 12 metals for temperatures ranging from 300 to 500 K [M]. Washington D.C: National Aeronautics and Space Administration, 1969.
|
Finuf M J, Gray B, Fritz R, et al. Laser welding copper with hight power cw blue laser[C]//International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America, 2017: P101.
|
Asano K, Tsukamoto M, Sechi Y, et al. Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers[J]. Optics Laser Technology, 2018, 107: 291 − 296. doi: 10.1016/j.optlastec.2018.06.012
|
Britten S W, Ocylok S. Blues skies for copper cladding with 450nm[C]//Laser 3D Manufacturing VI. SPIE, 2019: 41-48.
|
Yadav S, Paul C P, Jinoop A N, et al. Laser directed energy deposition based additive manufacturing of copper: process development and material characterizations[J]. Journal of Manufacturing Processes, 2020, 58: 984 − 997. doi: 10.1016/j.jmapro.2020.09.008
|
黄凤晓. 激光熔覆和熔覆成形镍基合金的组织与性能研究[D]. 长春: 吉林大学, 2011.
Huang Fengxiao. Study on microstructure and properties of nickel base alloy formed by laser cladding and cladding [D]. Changchun: Jilin University, 2011.
|
Zhang Z, Zhou H, Ren L, et al. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters[J]. Applied Surface Science, 2008, 254(8): 2548 − 2555. doi: 10.1016/j.apsusc.2007.09.102
|
Li L, Huang Y. Interaction of laser beam, powder stream and molten pool in laser deposition processing with coaxial nozzle[C]//Journal of Physics: Conference Series. IOP Publishing, 2018: 012078.
|
Abdelhafiz M, Al-Rubaie K S, Emadi A, et al. Process-structure-property relationships of copper parts manufactured by laser powder bed fusion[J]. Materials, 2021, 14(11): 2945.
|
Park J, Kim J, Ji I, et al. Numerical and experimental investigations of laser metal deposition (LMD) using STS 316L[J]. Applied Sciences, 2020, 10(14): 4874. doi: 10.3390/app10144874
|
Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica, 1986, 34(5): 823 − 830. doi: 10.1016/0001-6160(86)90056-8
|
Kou S. Welding metallurgy[J]. New Jersey, USA, 2003, 431(446): 223 − 225.
|
Bai Y, Williams C B. An exploration of binder jetting of copper[J]. Rapid Prototyping Journal, 2015, 21: 177 − 185.
|
Tan C, Zhou K, Ma W, et al. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture[J]. Materials & Design, 2018, 155: 77 − 85.
|
[1] | XU Lianyong, LONG Zhiping, ZHAO Lei, HAN Yongdian, PENG Chentao. Effect of stress concentration at weld toes on combined high and low cycle fatigue of EH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 1-9. DOI: 10.12073/j.hjxb.20230619003 |
[2] | LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001 |
[3] | HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037 |
[4] | DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28. |
[5] | XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108. |
[6] | YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108. |
[7] | ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108. |
[8] | XU Jun, ZHANG Yansong, ZHU Ping, CHEN Guanlong. Fatigue life analysis of lap-shear spot weld of dual phase steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 45-48. |
[9] | WANG Wen-xian, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. Effect of Transformation Temperature on Improving the Fatigue Strength of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 15-18. |
[10] | Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251. |