Citation: | Yongqiang YANG, Yaling WEN, Di WANG, Heng ZHOU, Zengqiang NIU, Tongjie LU. Process and performance of pure copper parts formed by blue laser directed energy depostion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 80-86. DOI: 10.12073/j.hjxb.20220427002 |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133 − 164. doi: 10.1179/1743280411Y.0000000014
|
Vilar R. Laser cladding[J]. Journal of Laser Applications, 1999, 11(2): 64 − 79. doi: 10.2351/1.521888
|
Santo L, Quadrini F, Bellisario D, et al. Local density measurement of additive manufactured copper parts by instrumented indentation[C]// AIP Conference Proceedings. AIP Publishing LLC, 2018: 100014.
|
Ikeshoji T T, Nakamura K, Yonehara M, et al. Selective laser melting of pure copper[J]. Jom, 2018, 70(3): 396 − 400. doi: 10.1007/s11837-017-2695-x
|
Colopi M, Demir A G, Caprio L, et al. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2473 − 2486.
|
Spisz E W. Solar absorptances and spectral reflectances of 12 metals for temperatures ranging from 300 to 500 K [M]. Washington D.C: National Aeronautics and Space Administration, 1969.
|
Finuf M J, Gray B, Fritz R, et al. Laser welding copper with hight power cw blue laser[C]//International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America, 2017: P101.
|
Asano K, Tsukamoto M, Sechi Y, et al. Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers[J]. Optics Laser Technology, 2018, 107: 291 − 296. doi: 10.1016/j.optlastec.2018.06.012
|
Britten S W, Ocylok S. Blues skies for copper cladding with 450nm[C]//Laser 3D Manufacturing VI. SPIE, 2019: 41-48.
|
Yadav S, Paul C P, Jinoop A N, et al. Laser directed energy deposition based additive manufacturing of copper: process development and material characterizations[J]. Journal of Manufacturing Processes, 2020, 58: 984 − 997. doi: 10.1016/j.jmapro.2020.09.008
|
黄凤晓. 激光熔覆和熔覆成形镍基合金的组织与性能研究[D]. 长春: 吉林大学, 2011.
Huang Fengxiao. Study on microstructure and properties of nickel base alloy formed by laser cladding and cladding [D]. Changchun: Jilin University, 2011.
|
Zhang Z, Zhou H, Ren L, et al. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters[J]. Applied Surface Science, 2008, 254(8): 2548 − 2555. doi: 10.1016/j.apsusc.2007.09.102
|
Li L, Huang Y. Interaction of laser beam, powder stream and molten pool in laser deposition processing with coaxial nozzle[C]//Journal of Physics: Conference Series. IOP Publishing, 2018: 012078.
|
Abdelhafiz M, Al-Rubaie K S, Emadi A, et al. Process-structure-property relationships of copper parts manufactured by laser powder bed fusion[J]. Materials, 2021, 14(11): 2945.
|
Park J, Kim J, Ji I, et al. Numerical and experimental investigations of laser metal deposition (LMD) using STS 316L[J]. Applied Sciences, 2020, 10(14): 4874. doi: 10.3390/app10144874
|
Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica, 1986, 34(5): 823 − 830. doi: 10.1016/0001-6160(86)90056-8
|
Kou S. Welding metallurgy[J]. New Jersey, USA, 2003, 431(446): 223 − 225.
|
Bai Y, Williams C B. An exploration of binder jetting of copper[J]. Rapid Prototyping Journal, 2015, 21: 177 − 185.
|
Tan C, Zhou K, Ma W, et al. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture[J]. Materials & Design, 2018, 155: 77 − 85.
|
[1] | HUANG Gang, ZHANG Qingdong, WANG Chunhai, ZHANG Boyang, KONG Ning. Experimental research on the blind hole-drilling method for measuring residual stress of steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 49-59, 80. DOI: 10.12073/j.hjxb.20200403002 |
[2] | TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125 |
[3] | HUANG Chaoqun1, LI Huan1, LUO Chuanguang1,2, SONG Yonglun3. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 54-58. DOI: 10.12073/j.hjxb.20150710004 |
[4] | HONG Haitao, HAN Yongquan, TONG Jiahui, PANG Shigang. Study of arc shape and voltage-current characteristics in variable polarity plasma arc-MIG hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 65-69. |
[5] | LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36. |
[6] | LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part I:Theoretical analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 46-50. |
[7] | YA Min, DAI Fu-long, LU Jian. Study on Residual Stress of Friction Stir Welding by Moiré Interferometry and Hole-Drilling Method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 53-56. |
[8] | Chen Huaining, Chen Liangshan, Dong Xiuzhong. Drilling strains in measuring residual stress with hole-drilling strain-gage method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 276-280. |
[9] | Meng Gongge. Reliability and precision of blind hole drilling method for determining high residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 235-238. |
[10] | Yu Xunman, Li Qingben, Wang Min. EFFECT OF THE INDUCED DRILLING STRAIN ON THE WELDING RESIDUAL STRESS MEASUREMENT BY BLIND-HOLE METHOD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1986, (4): 195-201. |
1. |
秦子濠,李湘文,郑学军,洪波,李继展,周芙蓉. 磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别. 焊接学报. 2023(05): 84-94+134 .
![]() | |
2. |
刘文吉,杨嘉昇,岳建锋,肖宇. 基于P-GMAW摆动电弧传感的窄间隙坡口宽度自适应焊接. 材料科学与工艺. 2023(06): 29-36 .
![]() | |
3. |
钦超,吕学勤,王裕东,瞿艳. 基于激光位移传感器的焊缝检测系统设计. 上海电力学院学报. 2019(02): 171-174 .
![]() |