Advanced Search
WU Chengfu, LI Xinyi, CHEN Hongsheng, LI Jian, NIE Huihui, WANG Wenxian. Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 44-53. DOI: 10.12073/j.hjxb.20220425003
Citation: WU Chengfu, LI Xinyi, CHEN Hongsheng, LI Jian, NIE Huihui, WANG Wenxian. Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 44-53. DOI: 10.12073/j.hjxb.20220425003

Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive

More Information
  • Received Date: April 24, 2022
  • Available Online: March 05, 2023
  • Particle reinforced metal matrix composite structural parts have a wide range of prospects in aerospace, mechanical manufacturing, electronic and electrical fields. This study fabricated WC-reinforced TC4 matrix composites by laser selective melting technology. The effects of WC particle content and laser power on the microstructure and mechanical properties of the composite were investigated. The results show that: with the increase of WC particle content, the forming ability of composite samples decreases. When WC particle content is (0% ~ 15%), WC particles are evenly distributed, and no micro-pores and cracks are seen. When WC particle content is 20%, pores and cracks appear inside the material, making it difficult to form. At the interface of WC/matrix, an interface layer of TiC and W2C is formed, and the interface bonding performance is good. With the increase of particle content and laser power in the composites, the fracture strength and elongation osf the composites decrease. The fracture mechanism is mainly the brittle fracture of WC particles and the lamellar tearing along the WC-W2C interface.
  • 王廷, 王一帆, 魏连峰, 等. TC4钛合金低压电子束熔丝沉积层组织与性能[J]. 焊接学报, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002

    Wang Ting, Wang Yifan, Wei Lianfeng, et al. Microstructure and properties of low-pressure electron beam fuse coating of TC4 titanium alloy[J]. Transactions of the China welding institution, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002
    韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002

    Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and development of advanced processing technology for particle reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002
    Cheng Jun, Yang Jun, Zhang Xinghua, et al. High temperature tribological behavior of a Ti-46Al-2Cr-2Nb intermetallics[J]. Intermetallics, 2012, 31: 120 − 126.
    Peng G, Bo F, Yu X M, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application[J]. Bioactive Materials, 2020, 5(3): 680 − 693. doi: 10.1016/j.bioactmat.2020.04.019
    Qiao S J, Liu X B, Zhai Y J, et al. Study on laser-alloyed self-lubricating anti-wear composite coating after ageing treatment[J]. Metals Science & Technology, 2016, 32(13): 1395 − 1402.
    Weng F, Chen C, Yu H. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 2014, 58(6): 412 − 425.
    Shi J M, Zhang L X, Chang Q, et al. Strengthening the ZrC-SiC ceramic and TC4 alloy brazed joint using laser additive manufactured functionally graded material layers[J]. Ceramics International, 2018, 44(10): 11060 − 11069.
    Zhao X, Gong Y, Liang G, et al. Face grinding surface quality of high volume fraction SiCp/Al composite materials[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 210 − 223.
    贺鹏飞, 魏正英, 杜军, 等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究[J]. 机械工程学报, 2021, 58(5): 258 − 267.

    He Pengfei, Wei Zhengying, Du Jun, et al. Investigation of droplet arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy[J]. Journal of Mechanical Engineering, 2021, 58(5): 258 − 267.
    Huo Pengcheng, Zhao Zhanyong, Bai Peikang et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting[J]. Composites, Part B. Engineering, 2021, 225(15): 1 − 10.
    Renato Pero, Giovanni Maizza, Roberto Montanari, et al. Nano-indentation properties of tungsten carbide-cobalt composites as a function of tungsten carbide crystal orientation[J]. Materials, 2020, 13(9): 2137. doi: 10.3390/ma13092137
    Farayibi P K, Folkes J A, Clare A T. Laser deposition of Ti-6Al-4V wire with WC powder for functionally graded components[J]. Materials & Manufacturing Processes, 2013, 28(5): 514 − 518.
    Hu Zhengyang, Cheng Xingwang, Zhang Zhaohui, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites[J]. Journal of Alloys and Compounds, 2017, 726: 240 − 253. doi: 10.1016/j.jallcom.2017.08.017
    Zhu Yanyan, Tang Haibo, He Bei, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys[J]. Journal of Alloys and Compounds, 2019, 777: 712 − 716. doi: 10.1016/j.jallcom.2018.11.055
    Moeinfar Kh, Khodabakhshi F, Kashani-bozorg S. F, et al A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys[J]. Journal of materials reserach and technology, 2022, 16: 1029 − 1068. doi: 10.1016/j.jmrt.2021.12.039
    Bartolomeu F, Buciumeanu M, Pintoe E, et al. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 829 − 838. doi: 10.1016/S1003-6326(17)60060-8
    Huo Pengcheng, Zhao Zhanyong, Du Wenbo, et al. Deformation and fracture mechanisms of in situ synthesized TiC reinforced TC4 matrix composites produced by selective laser melting[J]. Ceramics International, 2021, 47(14): 19546 − 19555. doi: 10.1016/j.ceramint.2021.03.292
    Liu Dejian, Hu Peipei, Min Guoqing. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing[J]. Optics and Laser Technology, 2015, 69: 180 − 186. doi: 10.1016/j.optlastec.2015.01.003
    Sundquist B E. The edgewise growth of pearlite[J]. Acta Metallurgica, 1968, 61(12): 1413 − 1427.
    Arsenault R J, Wang L, Feng C R, et al. Strengthening of composites due to microstructure changes in the matrix[J]. Acta Metallurgica et Materialia, 1991, 39: 47 − 57.
    Ramakrishnan N. Study on strengthening of reinforced metal matrix composites[J]. Acta Metallurgica, 1996, 44: 67 − 77.
    Liu Dejian, Chen Yanbin, Li Liqun. In situ investigation of fracture behavior in monocrystalline WCp-reinforced Ti-6Al-4V metal matrix composites produced by laser melt injection[J]. Scripta Materialia, 2008, 59(1): 91 − 94. doi: 10.1016/j.scriptamat.2008.02.033
  • Related Articles

    [1]GAO Zhanqi, JING Hongyang, XU Lianyong, HAN Yongdian. Research on microstructure and corrosion behavior of multi-pass welded joints of hyper duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 143-148. DOI: 10.12073/j.hjxb.2019400197
    [2]FU Wei, FANG Hongyuan, BAI Xinbo, CHEN Guoxi. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 29-33. DOI: 10.12073/j.hjxb.2019400150
    [3]CHEN Jie, WANG Yuhua, ZHU Zhenxin, XIAO Jun, ZHAN Xiaohong. Numerical simulation of multi-layer and multi-passes welding anti-deformation for thick plate Invar alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 84-89. DOI: 10.12073/j.hjxb.2019400105
    [4]HUANG Jun, ZHAI Ziyang, WANG Kehong, SONG Kai. Simulation and experiment on multi-pass welding of 616 armor steel with thick plate structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 89-93. DOI: 10.12073/j.hjxb.2018390279
    [5]YUAN Junjun, CHAN Zhishan, CAO Rui, MAO Gaojun, XIAO George. Analysis of impact toughness variation for flat position multi-pass weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 100-103. DOI: 10.12073/j.hjxb.20170522
    [6]SUN Jiamin, DENG Dean, YE Yanhong, HE Jing, XIA Linying. Numerical simulation of welding residual stress in multi-pass T-joint of thick Q390 high strength steel plate using instantaneous heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 31-34,38.
    [7]LU Xuedong, CEN Yue, WANG Huan, WU Mingfang. Structure and mechanical properties on DH40 ship building steel joints by multi-layer and multi-pass welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 79-83.
    [8]ZHAO Huihui, ZHANG Guangjun, FAN Qing, SHANGGUAN Yunjuan, WU Lin. Microstructure and performances of multi-pass single-layer weld-based remanufacturing component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 45-48.
    [9]YANG Guang-chen, XUE Zhong-ming, ZHANG Yan-hua. Prediction of angular distortion in thick plate multi-pass weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 115-118.
    [10]Yu Wensong, Xue Jiaxiang, Huang Shisheng, Zhang Xiaonan, Zhang Junhong, Cheng Tao bo. Simulation Study on Dynamic Process of CO2 Arc Welding with MATLAB[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 153-158.
  • Cited by

    Periodical cited type(1)

    1. 董逸君,王勇刚,李东亚,朱珊珊,许淑红,王瑶. 激光熔覆碳化物增强镍基涂层组织与性能的热处理调控. 焊接学报. 2024(10): 59-68 . 本站查看

    Other cited types(0)

Catalog

    Article views (314) PDF downloads (55) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return