Citation: | WU Chengfu, LI Xinyi, CHEN Hongsheng, LI Jian, NIE Huihui, WANG Wenxian. Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 44-53. DOI: 10.12073/j.hjxb.20220425003 |
王廷, 王一帆, 魏连峰, 等. TC4钛合金低压电子束熔丝沉积层组织与性能[J]. 焊接学报, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002
Wang Ting, Wang Yifan, Wei Lianfeng, et al. Microstructure and properties of low-pressure electron beam fuse coating of TC4 titanium alloy[J]. Transactions of the China welding institution, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002
|
韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002
Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and development of advanced processing technology for particle reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002
|
Cheng Jun, Yang Jun, Zhang Xinghua, et al. High temperature tribological behavior of a Ti-46Al-2Cr-2Nb intermetallics[J]. Intermetallics, 2012, 31: 120 − 126.
|
Peng G, Bo F, Yu X M, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application[J]. Bioactive Materials, 2020, 5(3): 680 − 693. doi: 10.1016/j.bioactmat.2020.04.019
|
Qiao S J, Liu X B, Zhai Y J, et al. Study on laser-alloyed self-lubricating anti-wear composite coating after ageing treatment[J]. Metals Science & Technology, 2016, 32(13): 1395 − 1402.
|
Weng F, Chen C, Yu H. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 2014, 58(6): 412 − 425.
|
Shi J M, Zhang L X, Chang Q, et al. Strengthening the ZrC-SiC ceramic and TC4 alloy brazed joint using laser additive manufactured functionally graded material layers[J]. Ceramics International, 2018, 44(10): 11060 − 11069.
|
Zhao X, Gong Y, Liang G, et al. Face grinding surface quality of high volume fraction SiCp/Al composite materials[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 210 − 223.
|
贺鹏飞, 魏正英, 杜军, 等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究[J]. 机械工程学报, 2021, 58(5): 258 − 267.
He Pengfei, Wei Zhengying, Du Jun, et al. Investigation of droplet arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy[J]. Journal of Mechanical Engineering, 2021, 58(5): 258 − 267.
|
Huo Pengcheng, Zhao Zhanyong, Bai Peikang et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting[J]. Composites, Part B. Engineering, 2021, 225(15): 1 − 10.
|
Renato Pero, Giovanni Maizza, Roberto Montanari, et al. Nano-indentation properties of tungsten carbide-cobalt composites as a function of tungsten carbide crystal orientation[J]. Materials, 2020, 13(9): 2137. doi: 10.3390/ma13092137
|
Farayibi P K, Folkes J A, Clare A T. Laser deposition of Ti-6Al-4V wire with WC powder for functionally graded components[J]. Materials & Manufacturing Processes, 2013, 28(5): 514 − 518.
|
Hu Zhengyang, Cheng Xingwang, Zhang Zhaohui, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites[J]. Journal of Alloys and Compounds, 2017, 726: 240 − 253. doi: 10.1016/j.jallcom.2017.08.017
|
Zhu Yanyan, Tang Haibo, He Bei, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys[J]. Journal of Alloys and Compounds, 2019, 777: 712 − 716. doi: 10.1016/j.jallcom.2018.11.055
|
Moeinfar Kh, Khodabakhshi F, Kashani-bozorg S. F, et al A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys[J]. Journal of materials reserach and technology, 2022, 16: 1029 − 1068. doi: 10.1016/j.jmrt.2021.12.039
|
Bartolomeu F, Buciumeanu M, Pintoe E, et al. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 829 − 838. doi: 10.1016/S1003-6326(17)60060-8
|
Huo Pengcheng, Zhao Zhanyong, Du Wenbo, et al. Deformation and fracture mechanisms of in situ synthesized TiC reinforced TC4 matrix composites produced by selective laser melting[J]. Ceramics International, 2021, 47(14): 19546 − 19555. doi: 10.1016/j.ceramint.2021.03.292
|
Liu Dejian, Hu Peipei, Min Guoqing. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing[J]. Optics and Laser Technology, 2015, 69: 180 − 186. doi: 10.1016/j.optlastec.2015.01.003
|
Sundquist B E. The edgewise growth of pearlite[J]. Acta Metallurgica, 1968, 61(12): 1413 − 1427.
|
Arsenault R J, Wang L, Feng C R, et al. Strengthening of composites due to microstructure changes in the matrix[J]. Acta Metallurgica et Materialia, 1991, 39: 47 − 57.
|
Ramakrishnan N. Study on strengthening of reinforced metal matrix composites[J]. Acta Metallurgica, 1996, 44: 67 − 77.
|
Liu Dejian, Chen Yanbin, Li Liqun. In situ investigation of fracture behavior in monocrystalline WCp-reinforced Ti-6Al-4V metal matrix composites produced by laser melt injection[J]. Scripta Materialia, 2008, 59(1): 91 − 94. doi: 10.1016/j.scriptamat.2008.02.033
|
[1] | GAO Zhanqi, JING Hongyang, XU Lianyong, HAN Yongdian. Research on microstructure and corrosion behavior of multi-pass welded joints of hyper duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 143-148. DOI: 10.12073/j.hjxb.2019400197 |
[2] | FU Wei, FANG Hongyuan, BAI Xinbo, CHEN Guoxi. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 29-33. DOI: 10.12073/j.hjxb.2019400150 |
[3] | CHEN Jie, WANG Yuhua, ZHU Zhenxin, XIAO Jun, ZHAN Xiaohong. Numerical simulation of multi-layer and multi-passes welding anti-deformation for thick plate Invar alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 84-89. DOI: 10.12073/j.hjxb.2019400105 |
[4] | HUANG Jun, ZHAI Ziyang, WANG Kehong, SONG Kai. Simulation and experiment on multi-pass welding of 616 armor steel with thick plate structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 89-93. DOI: 10.12073/j.hjxb.2018390279 |
[5] | YUAN Junjun, CHAN Zhishan, CAO Rui, MAO Gaojun, XIAO George. Analysis of impact toughness variation for flat position multi-pass weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 100-103. DOI: 10.12073/j.hjxb.20170522 |
[6] | SUN Jiamin, DENG Dean, YE Yanhong, HE Jing, XIA Linying. Numerical simulation of welding residual stress in multi-pass T-joint of thick Q390 high strength steel plate using instantaneous heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 31-34,38. |
[7] | LU Xuedong, CEN Yue, WANG Huan, WU Mingfang. Structure and mechanical properties on DH40 ship building steel joints by multi-layer and multi-pass welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 79-83. |
[8] | ZHAO Huihui, ZHANG Guangjun, FAN Qing, SHANGGUAN Yunjuan, WU Lin. Microstructure and performances of multi-pass single-layer weld-based remanufacturing component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 45-48. |
[9] | YANG Guang-chen, XUE Zhong-ming, ZHANG Yan-hua. Prediction of angular distortion in thick plate multi-pass weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 115-118. |
[10] | Yu Wensong, Xue Jiaxiang, Huang Shisheng, Zhang Xiaonan, Zhang Junhong, Cheng Tao bo. Simulation Study on Dynamic Process of CO2 Arc Welding with MATLAB[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 153-158. |
1. |
董逸君,王勇刚,李东亚,朱珊珊,许淑红,王瑶. 激光熔覆碳化物增强镍基涂层组织与性能的热处理调控. 焊接学报. 2024(10): 59-68 .
![]() |