Advanced Search
WU Chengfu, LI Xinyi, CHEN Hongsheng, LI Jian, NIE Huihui, WANG Wenxian. Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 44-53. DOI: 10.12073/j.hjxb.20220425003
Citation: WU Chengfu, LI Xinyi, CHEN Hongsheng, LI Jian, NIE Huihui, WANG Wenxian. Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 44-53. DOI: 10.12073/j.hjxb.20220425003

Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive

More Information
  • Received Date: April 24, 2022
  • Available Online: March 05, 2023
  • Particle reinforced metal matrix composite structural parts have a wide range of prospects in aerospace, mechanical manufacturing, electronic and electrical fields. This study fabricated WC-reinforced TC4 matrix composites by laser selective melting technology. The effects of WC particle content and laser power on the microstructure and mechanical properties of the composite were investigated. The results show that: with the increase of WC particle content, the forming ability of composite samples decreases. When WC particle content is (0% ~ 15%), WC particles are evenly distributed, and no micro-pores and cracks are seen. When WC particle content is 20%, pores and cracks appear inside the material, making it difficult to form. At the interface of WC/matrix, an interface layer of TiC and W2C is formed, and the interface bonding performance is good. With the increase of particle content and laser power in the composites, the fracture strength and elongation osf the composites decrease. The fracture mechanism is mainly the brittle fracture of WC particles and the lamellar tearing along the WC-W2C interface.
  • 王廷, 王一帆, 魏连峰, 等. TC4钛合金低压电子束熔丝沉积层组织与性能[J]. 焊接学报, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002

    Wang Ting, Wang Yifan, Wei Lianfeng, et al. Microstructure and properties of low-pressure electron beam fuse coating of TC4 titanium alloy[J]. Transactions of the China welding institution, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002
    韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002

    Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and development of advanced processing technology for particle reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002
    Cheng Jun, Yang Jun, Zhang Xinghua, et al. High temperature tribological behavior of a Ti-46Al-2Cr-2Nb intermetallics[J]. Intermetallics, 2012, 31: 120 − 126.
    Peng G, Bo F, Yu X M, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application[J]. Bioactive Materials, 2020, 5(3): 680 − 693. doi: 10.1016/j.bioactmat.2020.04.019
    Qiao S J, Liu X B, Zhai Y J, et al. Study on laser-alloyed self-lubricating anti-wear composite coating after ageing treatment[J]. Metals Science & Technology, 2016, 32(13): 1395 − 1402.
    Weng F, Chen C, Yu H. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 2014, 58(6): 412 − 425.
    Shi J M, Zhang L X, Chang Q, et al. Strengthening the ZrC-SiC ceramic and TC4 alloy brazed joint using laser additive manufactured functionally graded material layers[J]. Ceramics International, 2018, 44(10): 11060 − 11069.
    Zhao X, Gong Y, Liang G, et al. Face grinding surface quality of high volume fraction SiCp/Al composite materials[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 210 − 223.
    贺鹏飞, 魏正英, 杜军, 等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究[J]. 机械工程学报, 2021, 58(5): 258 − 267.

    He Pengfei, Wei Zhengying, Du Jun, et al. Investigation of droplet arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy[J]. Journal of Mechanical Engineering, 2021, 58(5): 258 − 267.
    Huo Pengcheng, Zhao Zhanyong, Bai Peikang et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting[J]. Composites, Part B. Engineering, 2021, 225(15): 1 − 10.
    Renato Pero, Giovanni Maizza, Roberto Montanari, et al. Nano-indentation properties of tungsten carbide-cobalt composites as a function of tungsten carbide crystal orientation[J]. Materials, 2020, 13(9): 2137. doi: 10.3390/ma13092137
    Farayibi P K, Folkes J A, Clare A T. Laser deposition of Ti-6Al-4V wire with WC powder for functionally graded components[J]. Materials & Manufacturing Processes, 2013, 28(5): 514 − 518.
    Hu Zhengyang, Cheng Xingwang, Zhang Zhaohui, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites[J]. Journal of Alloys and Compounds, 2017, 726: 240 − 253. doi: 10.1016/j.jallcom.2017.08.017
    Zhu Yanyan, Tang Haibo, He Bei, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys[J]. Journal of Alloys and Compounds, 2019, 777: 712 − 716. doi: 10.1016/j.jallcom.2018.11.055
    Moeinfar Kh, Khodabakhshi F, Kashani-bozorg S. F, et al A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys[J]. Journal of materials reserach and technology, 2022, 16: 1029 − 1068. doi: 10.1016/j.jmrt.2021.12.039
    Bartolomeu F, Buciumeanu M, Pintoe E, et al. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 829 − 838. doi: 10.1016/S1003-6326(17)60060-8
    Huo Pengcheng, Zhao Zhanyong, Du Wenbo, et al. Deformation and fracture mechanisms of in situ synthesized TiC reinforced TC4 matrix composites produced by selective laser melting[J]. Ceramics International, 2021, 47(14): 19546 − 19555. doi: 10.1016/j.ceramint.2021.03.292
    Liu Dejian, Hu Peipei, Min Guoqing. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing[J]. Optics and Laser Technology, 2015, 69: 180 − 186. doi: 10.1016/j.optlastec.2015.01.003
    Sundquist B E. The edgewise growth of pearlite[J]. Acta Metallurgica, 1968, 61(12): 1413 − 1427.
    Arsenault R J, Wang L, Feng C R, et al. Strengthening of composites due to microstructure changes in the matrix[J]. Acta Metallurgica et Materialia, 1991, 39: 47 − 57.
    Ramakrishnan N. Study on strengthening of reinforced metal matrix composites[J]. Acta Metallurgica, 1996, 44: 67 − 77.
    Liu Dejian, Chen Yanbin, Li Liqun. In situ investigation of fracture behavior in monocrystalline WCp-reinforced Ti-6Al-4V metal matrix composites produced by laser melt injection[J]. Scripta Materialia, 2008, 59(1): 91 − 94. doi: 10.1016/j.scriptamat.2008.02.033
  • Related Articles

    [1]LI Xingran, LIU Zhenglin, JIANG Pengfei, NIE Minghao, ZHANG Zhihui. Interfacial characterization and properties of Ti6Al4V/NiTi laser additive manufactured functional gradient materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 27-33. DOI: 10.12073/j.hjxb.20230307001
    [2]HUANG Weibo, ZHAO Xiaoyu, LU Wenjia, Zhu Lisha, ZHANG Yimin. Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 67-73. DOI: 10.12073/j.hjxb.20221129006
    [3]WANG Dongpo, ZHANG Zixuan, GAO Wenbin, DENG Caiyan, LIANG Hang, WANG Ting. Comparative analysis of fracture toughness of EBW and TIG welded joints of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 7-13. DOI: 10.12073/j.hjxb.20220921002
    [4]ZHU Qiang, ZHAO Wentao, LEI Yuchen, LI Hongliang, WEI Pengyu. Effect of Ti on microstructure and properties of laser welding weld of SiC particle reinforced 6092 Al alloy matrix composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 85-90. DOI: 10.12073/j.hjxb.20201003002
    [5]XU Xiaolong, LI Zhuoran, LIU Ruihua, WANG Zhengzheng. Microstructure and mechanical properties of ZrB2-SiC ceramic composite brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 59-62.
    [6]LIU Wei, ZHAO Haisheng, HE Jingshan, ZHANG Binggang. Microstructure and fracture path of electron beam welded joint of QCr0.8/TC4 sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 81-84.
    [7]QIN Youqiong, FENG Jicai, ZHANG Lixia. Microstructure and fracture properties of carbon/carbon composite and TC4 titanium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 13-16.
    [8]YUAN Shi-dong, QIU Xiao-ming, ZHU Song, SUN Da-qian, YIN Shi-qiang. Interface reaction mechanism of porcelain fused to Ni-Cr alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 67-69.
    [9]XU Lianyong, JING Hongyang, HUO Lixing, ZHANG Yufeng. Young' s modulus and interface fracture toughness of metal-base ceramic coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 55-58.
    [10]SHI Chang-gen, WANG Yao-hua, CAl Li-gen, KANG Li-xia. Bonding Mechanism of Interface in Explosive Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 55-58.
  • Cited by

    Periodical cited type(2)

    1. 蔡绪康,王磊磊,杨兴运,占小红. 激光熔化沉积TiC/TC4复合材料热-流行为及陶瓷颗粒分布状态. 焊接学报. 2024(05): 74-83 . 本站查看
    2. 宫书林,张煜,宋美慧,李岩,李艳春. 增材制造Ti基复合材料的研究进展. 黑龙江科学. 2024(16): 27-31 .

    Other cited types(0)

Catalog

    Article views (314) PDF downloads (55) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return