Citation: | WU Chengfu, LI Xinyi, CHEN Hongsheng, LI Jian, NIE Huihui, WANG Wenxian. Interface connection mechanism and mechanical properties of WCp titanium matrix composites fabricated by laser additive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 44-53. DOI: 10.12073/j.hjxb.20220425003 |
王廷, 王一帆, 魏连峰, 等. TC4钛合金低压电子束熔丝沉积层组织与性能[J]. 焊接学报, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002
Wang Ting, Wang Yifan, Wei Lianfeng, et al. Microstructure and properties of low-pressure electron beam fuse coating of TC4 titanium alloy[J]. Transactions of the China welding institution, 2020, 41(10): 54 − 59. doi: 10.12073/j.hjxb.20200803002
|
韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002
Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and development of advanced processing technology for particle reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1625 − 1635. doi: 10.13801/j.cnki.fhclxb.20170523.002
|
Cheng Jun, Yang Jun, Zhang Xinghua, et al. High temperature tribological behavior of a Ti-46Al-2Cr-2Nb intermetallics[J]. Intermetallics, 2012, 31: 120 − 126.
|
Peng G, Bo F, Yu X M, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application[J]. Bioactive Materials, 2020, 5(3): 680 − 693. doi: 10.1016/j.bioactmat.2020.04.019
|
Qiao S J, Liu X B, Zhai Y J, et al. Study on laser-alloyed self-lubricating anti-wear composite coating after ageing treatment[J]. Metals Science & Technology, 2016, 32(13): 1395 − 1402.
|
Weng F, Chen C, Yu H. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 2014, 58(6): 412 − 425.
|
Shi J M, Zhang L X, Chang Q, et al. Strengthening the ZrC-SiC ceramic and TC4 alloy brazed joint using laser additive manufactured functionally graded material layers[J]. Ceramics International, 2018, 44(10): 11060 − 11069.
|
Zhao X, Gong Y, Liang G, et al. Face grinding surface quality of high volume fraction SiCp/Al composite materials[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 210 − 223.
|
贺鹏飞, 魏正英, 杜军, 等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究[J]. 机械工程学报, 2021, 58(5): 258 − 267.
He Pengfei, Wei Zhengying, Du Jun, et al. Investigation of droplet arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy[J]. Journal of Mechanical Engineering, 2021, 58(5): 258 − 267.
|
Huo Pengcheng, Zhao Zhanyong, Bai Peikang et al. Deformation strengthening mechanism of in situ TiC/TC4 alloy nanocomposites produced by selective laser melting[J]. Composites, Part B. Engineering, 2021, 225(15): 1 − 10.
|
Renato Pero, Giovanni Maizza, Roberto Montanari, et al. Nano-indentation properties of tungsten carbide-cobalt composites as a function of tungsten carbide crystal orientation[J]. Materials, 2020, 13(9): 2137. doi: 10.3390/ma13092137
|
Farayibi P K, Folkes J A, Clare A T. Laser deposition of Ti-6Al-4V wire with WC powder for functionally graded components[J]. Materials & Manufacturing Processes, 2013, 28(5): 514 − 518.
|
Hu Zhengyang, Cheng Xingwang, Zhang Zhaohui, et al. Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB + TiC)/TC4 composites[J]. Journal of Alloys and Compounds, 2017, 726: 240 − 253. doi: 10.1016/j.jallcom.2017.08.017
|
Zhu Yanyan, Tang Haibo, He Bei, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys[J]. Journal of Alloys and Compounds, 2019, 777: 712 − 716. doi: 10.1016/j.jallcom.2018.11.055
|
Moeinfar Kh, Khodabakhshi F, Kashani-bozorg S. F, et al A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys[J]. Journal of materials reserach and technology, 2022, 16: 1029 − 1068. doi: 10.1016/j.jmrt.2021.12.039
|
Bartolomeu F, Buciumeanu M, Pintoe E, et al. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 829 − 838. doi: 10.1016/S1003-6326(17)60060-8
|
Huo Pengcheng, Zhao Zhanyong, Du Wenbo, et al. Deformation and fracture mechanisms of in situ synthesized TiC reinforced TC4 matrix composites produced by selective laser melting[J]. Ceramics International, 2021, 47(14): 19546 − 19555. doi: 10.1016/j.ceramint.2021.03.292
|
Liu Dejian, Hu Peipei, Min Guoqing. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing[J]. Optics and Laser Technology, 2015, 69: 180 − 186. doi: 10.1016/j.optlastec.2015.01.003
|
Sundquist B E. The edgewise growth of pearlite[J]. Acta Metallurgica, 1968, 61(12): 1413 − 1427.
|
Arsenault R J, Wang L, Feng C R, et al. Strengthening of composites due to microstructure changes in the matrix[J]. Acta Metallurgica et Materialia, 1991, 39: 47 − 57.
|
Ramakrishnan N. Study on strengthening of reinforced metal matrix composites[J]. Acta Metallurgica, 1996, 44: 67 − 77.
|
Liu Dejian, Chen Yanbin, Li Liqun. In situ investigation of fracture behavior in monocrystalline WCp-reinforced Ti-6Al-4V metal matrix composites produced by laser melt injection[J]. Scripta Materialia, 2008, 59(1): 91 − 94. doi: 10.1016/j.scriptamat.2008.02.033
|
[1] | LI Xingran, LIU Zhenglin, JIANG Pengfei, NIE Minghao, ZHANG Zhihui. Interfacial characterization and properties of Ti6Al4V/NiTi laser additive manufactured functional gradient materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 27-33. DOI: 10.12073/j.hjxb.20230307001 |
[2] | HUANG Weibo, ZHAO Xiaoyu, LU Wenjia, Zhu Lisha, ZHANG Yimin. Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 67-73. DOI: 10.12073/j.hjxb.20221129006 |
[3] | WANG Dongpo, ZHANG Zixuan, GAO Wenbin, DENG Caiyan, LIANG Hang, WANG Ting. Comparative analysis of fracture toughness of EBW and TIG welded joints of TC4 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 7-13. DOI: 10.12073/j.hjxb.20220921002 |
[4] | ZHU Qiang, ZHAO Wentao, LEI Yuchen, LI Hongliang, WEI Pengyu. Effect of Ti on microstructure and properties of laser welding weld of SiC particle reinforced 6092 Al alloy matrix composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 85-90. DOI: 10.12073/j.hjxb.20201003002 |
[5] | XU Xiaolong, LI Zhuoran, LIU Ruihua, WANG Zhengzheng. Microstructure and mechanical properties of ZrB2-SiC ceramic composite brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 59-62. |
[6] | LIU Wei, ZHAO Haisheng, HE Jingshan, ZHANG Binggang. Microstructure and fracture path of electron beam welded joint of QCr0.8/TC4 sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 81-84. |
[7] | QIN Youqiong, FENG Jicai, ZHANG Lixia. Microstructure and fracture properties of carbon/carbon composite and TC4 titanium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 13-16. |
[8] | YUAN Shi-dong, QIU Xiao-ming, ZHU Song, SUN Da-qian, YIN Shi-qiang. Interface reaction mechanism of porcelain fused to Ni-Cr alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 67-69. |
[9] | XU Lianyong, JING Hongyang, HUO Lixing, ZHANG Yufeng. Young' s modulus and interface fracture toughness of metal-base ceramic coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 55-58. |
[10] | SHI Chang-gen, WANG Yao-hua, CAl Li-gen, KANG Li-xia. Bonding Mechanism of Interface in Explosive Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 55-58. |
1. |
蔡绪康,王磊磊,杨兴运,占小红. 激光熔化沉积TiC/TC4复合材料热-流行为及陶瓷颗粒分布状态. 焊接学报. 2024(05): 74-83 .
![]() | |
2. |
宫书林,张煜,宋美慧,李岩,李艳春. 增材制造Ti基复合材料的研究进展. 黑龙江科学. 2024(16): 27-31 .
![]() |