Advanced Search
SHEN Bingwei, XU Mingyue, YANG Shangrong, LIU Guohua, XIE Ming, DUAN Yunzhao. Effect of welding time and temperature on properties of Sn35Bi0.3Ag/Cu welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 77-86. DOI: 10.12073/j.hjxb.20220418001
Citation: SHEN Bingwei, XU Mingyue, YANG Shangrong, LIU Guohua, XIE Ming, DUAN Yunzhao. Effect of welding time and temperature on properties of Sn35Bi0.3Ag/Cu welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 77-86. DOI: 10.12073/j.hjxb.20220418001

Effect of welding time and temperature on properties of Sn35Bi0.3Ag/Cu welded joints

More Information
  • Received Date: April 17, 2022
  • Available Online: February 13, 2023
  • Sn35Bi0.3Ag/Cu welded joints were prepared at different welding time and temperature. The effects of welding time (1 ~ 9 min) and welding temperature (210 ~ 290 ℃) on the microstructure and mechanical properties of Sn35Bi0.3Ag/Cu welded joints were studyed by means of scanning electron microscope (SEM), universal tensile testing machine and ultrasonic scan machine. The results show that the Cu element diffuses into the welding interface and forms the (Cu5Sn6, Cu3Sn) interface layer. The Ag3Sn phase can inhibit the growth of interfacial layer. With the increase of welding time or welding temperature, the reaction layer thickens and the shear strength increases first and then decreases. The analysis of the fracture morphology of the welded joint shows that the fracture of the welded joint is jointly affected by Bi phase particles and Cu6Sn5 particles.The fracture of the welded joint occurs on the IMC / solder side. Bi phase particles and Cu6Sn5 particles affect the shear strength of the joint.In addition, when the welding time is 3 min and the welding temperature is 230 ℃, the brazing rate is the highest (99.14%) and the shear strength reaches the maximum value (51.8 MPa).
  • 邹阳, 郭波, 段学俊. 无铅焊点可靠性的研究进展[J]. 焊接, 2021(8): 41 − 48.

    Zou Yang, Guo Bo, Duan Xuejun. Research progress on reliabity of lead-free soldered joints[J]. Welding & Joining, 2021(8): 41 − 48.
    Peng F, Liu W, Ma Y, et al. Microstructure of Sn-20In-2.8Ag solder and mechanical properties of joint with Cu[J]. Soldering & Surface Mount Technology, 2019, 31(1): 1 − 5.
    Tong H M, Lai Y S, Wong C P. Advanced flip chip packaging[M]. Springer US, 2013.
    Xu K K, Zhang L, Gao L L, et al. Review of microstructure and properties of low temperature lead-free solder in electronic packaging[J]. Science and Technology of Advanced Materials, 2020, 21(1): 689 − 711. doi: 10.1080/14686996.2020.1824255
    陈旭. Sn-Bi基焊料组织与性能研究[D]. 长沙: 东南大学, 2017.

    Chen Xu. Investigation on the microstructure and properties of Sn-Bi based solder alloys[D]. Changsha: Southeast University, 2017.
    吴翠平. 稀土元素的添加对SnBi系焊料合金微观组织及界面反应的影响[D]. 重庆: 重庆大学, 2011.

    Wu Cuiping. Influences of rare earth additions on the microstructure and interfacial reaction of SnBi solder alloys[D]. Chongqing: Chongqing University, 2011.
    Dong W, Shi Y, Xia Z, et al. Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy[J]. Journal of Electronic Materials, 2008, 37(7): 982 − 991. doi: 10.1007/s11664-008-0458-8
    Kanlayasiri K, Ariga T. Physical properties of Sn58Bi-xNi lead-free solder and its interfacial reaction with copper substrate[J]. Materials & Design, 2015, 86: 371 − 378.
    Zhang L, Sun L, Guo Y H. Microstructures and properties of Sn58Bi, Sn35Bi0.3Ag, Sn35Bi1.0Ag solder and solder joints[J]. Journal of Materials Science Materials in Electronics, 2015, 26(10): 1 − 6.
    陆政, 舒慧, 蒋博. 浅谈回流焊炉温度设置及焊点的切片金相检测[J]. 科技创新导报, 2019, 16(29): 83 − 84. doi: 10.16660/j.cnki.1674-098X.2019.29.083

    Lu Zheng, Shu Hui, Jiang Bo. Temperature setting of reflow soldering furnace and metallographic examination of solder joints[J]. Science and Technology Innovation Herald, 2019, 16(29): 83 − 84. doi: 10.16660/j.cnki.1674-098X.2019.29.083
    曾宝, 周波, 张雪梅, 等. 无铅焊料锡须生长[J]. 印制电路信息, 2018, 26: 305 − 309. doi: 10.3969/j.issn.1009-0096.2018.z1.042

    Zeng Bao, Zhou Bo, Zhang Xuemei, et al. Lead-free solder whisker growth[J]. Printed Circuit Information, 2018, 26: 305 − 309. doi: 10.3969/j.issn.1009-0096.2018.z1.042
    Laurila T, Vuorinen V, Kivilahti J K. Interfacial reactions between lead-free solders and common base materials[J]. Materials Science & Engineering, 2005, 49: 1 − 60.
    Cui B, Song L Y, Liu Z M, et al. Study of the morphology and properties of diamond joints brazed with carbide-reinforced Cu-Sn-Ti filler metal[J]. China Welding, 2022, 31(3): 53 − 60.
    Wan Y, Li S, Hu X, et al. Shear strength and fracture surface analysis of Sn58Bi/Cu solder joints under a wide range of strain rates[J]. Microelectronics Reliability, 2018, 86: 27 − 37. doi: 10.1016/j.microrel.2018.05.007
    薛松柏, 胡永芳, 禹胜林. CBGA焊点热循环条件下的可靠性[J]. 焊接学报, 2005, 26(10): 81 − 83.

    Xue S B, Hu Y F, Yu S L. Reliability of CBGA soldered joint under thermal cycling[J]. Transactions of the China Welding Institution, 2005, 26(10): 81 − 83.
  • Related Articles

    [1]GU Ningjie, WU Hao, MAO Xiaodong, SONG Xiaoyu, ZOU Liying, DONG Xueguang, SHI Xiaocheng. Effect of micro-alloying elements modification on the microstructure and properties of TIG welded joints of AlMg4.3Mn0.6Cr0.12-H321 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 127-136. DOI: 10.12073/j.hjxb.20231204003
    [2]QIAO Xiaoli, CAO Shuai, WU Jingwei, ZHANG Jianxiao, HUANG Jiankang, FAN Ding. Microstructure and mechanical properties of Inconel 600 nickel-based alloy PAW + TIG joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 105-112. DOI: 10.12073/j.hjxb.20231225002
    [3]WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002
    [4]XUAN Jianwei, ZHU Dingyi, WANG Jiliang, PENG Xian, WANG Jianting, WANG Mingjie. Microstructure and mechanical properties of high-carbon bearing copper TWIP steels TIG welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 93-96.
    [5]SUN Huhao, XUE Songbai, FENG Xianmei, LIN Zhongqiang, LI Yang. Microstructure and mechanical properties of weld joint of marine 6082 aluminum alloy By TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 91-94.
    [6]CHEN Cheng, XUE Songbai, SUN Huhao, LIN Zhongqiang, LI Yang. Microstructure and mechanical properties of 5083 aluminum alloy joint by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 37-40.
    [7]LEI Yucheng, ZHAO Kai, HUANG Wei, LIANG Shenyong. Effect of La2O3 on microstructure and mechanical properties of MGH956 alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 1-4.
    [8]WU Wei, CHENG Guangfu, GAO Hongming, WU Lin. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 81-84.
    [9]LV Shixiong, WANG Ting, FENG Jicai. Microstructure and mechanical properties of TIG welded 20G/316L clad pipe joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 93-96.
    [10]WANG Da-yong, FENG Ji-cai, XU Wei. Effect of heat treatment on microstructures and mechanical properties of Al-Li-Cu alloy TIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 23-25,50.
  • Cited by

    Periodical cited type(2)

    1. 秦建,杨浩哲,裴夤崟,杨骄,龙伟民,廖志谦,雷振. 原位合成钎料Zr含量对钎焊接头组织与性能影响. 焊接学报. 2025(03): 27-35 . 本站查看
    2. 林彤,谢红,张勤练,赵文岐,司晓庆,李淳,陈惠泽,富明宇,亓钧雷,曹健. 采用电镀镍/铜中间层TLP扩散连接TC4钛合金. 中国有色金属学报. 2023(05): 1390-1398 .

    Other cited types(0)

Catalog

    Article views (260) PDF downloads (82) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return