Advanced Search
ZHAO Yanqiu, LI Xiang, LIU Zhiqiang, YAN Tingyan, WANG Leilei, ZHAN Xiaohong. Effect of laser power on the morphology and porosity for 2195 Al-Li alloy fabricated by fiber-diode laser hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 99-106. DOI: 10.12073/j.hjxb.20220225001
Citation: ZHAO Yanqiu, LI Xiang, LIU Zhiqiang, YAN Tingyan, WANG Leilei, ZHAN Xiaohong. Effect of laser power on the morphology and porosity for 2195 Al-Li alloy fabricated by fiber-diode laser hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 99-106. DOI: 10.12073/j.hjxb.20220225001

Effect of laser power on the morphology and porosity for 2195 Al-Li alloy fabricated by fiber-diode laser hybrid welding

More Information
  • Received Date: February 24, 2022
  • Available Online: December 18, 2022
  • Fiber-diode laser hybrid welding technology, which adequately combines the superiorities of both fiber and diode laser heat source, has great potential in the field of laser processing. In this paper, fiber-diode laser hybrid welding experiments were conducted for the 2195 Al-Li alloy. The effect of laser power on morphology and porosity was quantitatively investigated. The results show that fiber laser power has a significantly impact on the weld depth, while diode laser power has a significantly influence on the upper weld width. The regression model for predicting the cross-sectional area of weld seam was obtained. Besides, both fiber and diode laser play an important role in the control of porosity defects. The higher power of fiber laser is beneficial to reduce porosity. For 2195 Al-Li alloy with the thickness of 4mm, the high-temperature molten pool and large range of fiber-diode laser action region are formed at the fiber laser power of 3.0 kW and diode laser power between 2.5 kW and 3.0 kW, which results in the welded joint with the less porosity.
  • 罗传光, 李桓, 于福盛, 等. 2195-F态铝锂合金TIG焊和FSW焊后残余应力分析[J]. 焊接学报, 2018, 39(11): 43 − 47.

    Luo Chuanguang, Li Huan, Yu Fusheng, et al. Residual stress analysis of 2195-F state aluminum lithium alloy after TIG welding and FSW[J]. Transactions of The China Welding Institution, 2018, 39(11): 43 − 47.
    熊焕. 低温贮箱及铝锂合金的应用[J]. 导弹与航天运载技术, 2001(6): 33 − 40. doi: 10.3969/j.issn.1004-7182.2001.06.007

    Xiong Huan. Cryogenic tank and application of aluminum lithium alloy[J]. Missiles and Space Vehicles, 2001(6): 33 − 40. doi: 10.3969/j.issn.1004-7182.2001.06.007
    马云龙, 杨子奇, 李劲风. 2195铝锂合金摩擦搅拌焊接头组织与腐蚀行为[J]. 焊接学报, 2019, 40(10): 142 − 147.

    Ma Yunlong, Yang Ziqi, Li Jinfeng. Structure and corrosion behavior of friction stir weld joint of 2195 Al-Li alloy[J]. Transactions of The China Welding Institution, 2019, 40(10): 142 − 147.
    张新瑞. 2195铝锂合金激光选区熔化成形及裂纹缺陷调控[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Zhang Xinrui. Selective laser melting of AA2195 Al-Li alloy and crack defect control[D]. Harbin: Harbin Institute of Technology, 2020.
    Zhao H, White D. R., DebRoy T Current issues and problems in laser welding of automotive aluminium alloys[J]. International Materials Reviews, 1999, 44(6): 238 − 266. doi: 10.1179/095066099101528298
    Dittrich D, Standfuss J, Liebscher J, et al. Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design – first results[J]. Physics Procedia, 2011, 12: 113 − 122. doi: 10.1016/j.phpro.2011.03.015
    韩晓辉, 马寅, 马国龙, 等. 双光束激光焊匙孔动态特征分析[J]. 焊接学报, 2020, 41(2): 93 − 96.

    Han Xiaohui, Ma Yin, Ma Guolong, et al. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. Transactions of the China Welding Institution, 2020, 41(2): 93 − 96.
    常云峰, 雷振, 王旭友, 等. 2A14铝合金激光-MIG复合填丝焊特性分析[J]. 焊接学报, 2017, 38(7): 40 − 44.

    Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Process of laser-MIG hybrid welding of 2A14 aluminum alloy with filler wire[J]. Transactions of the China Welding Institution, 2017, 38(7): 40 − 44.
    Bagger Claus, Olsen Flemming O. Review of laser hybrid welding[J]. Journal of Laser Applications, 2005, 17(1): 2 − 14. doi: 10.2351/1.1848532
    Mahrle A, Beyer E. Hybrid laser beam welding—Classification, characteristics, and applications[J]. Journal of Laser Applications, 2006, 18(3): 169 − 180. doi: 10.2351/1.2227012
    Kronthaler M R, Braunreuther S, Zaeh M. F. Bifocal hybrid laser welding -more than a superposition of two processes[J]. Physics Procedia, 2011, 12: 208 − 214. doi: 10.1016/j.phpro.2011.03.027
    Witzendorff P. , Hermsdorf J., Kaierle S., et al. Double pulse laser welding of 6082 aluminium alloys[J]. Science and Technology of Welding and Joining, 2015, 20(1): 42 − 47. doi: 10.1179/1362171814Y.0000000255
    杨璟. 铝合金激光深熔焊接过程行为与缺陷控制研究[D]. 北京: 北京工业大学, 2011.

    Yang Jing. Study on the process behavior and defects control during laser deep penetration welding of aluminium alloy[D]. Beijing: Beijing University of Technology, 2011.
    杨海锋, 王旭友, 王威, 等. 铝合金双光束激光焊接过程稳定性分析[J]. 焊接学报, 2016, 37(6): 13 − 18.

    Yang Haifeng, Wang Xuyou, Wang Wei, et al. Process stability analysis of double beam laser welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(6): 13 − 18.
    朱宝华, 李小婷, 丁凯强. 半导体-光纤激光复合焊接铝合金研究[J]. 应用激光, 2018, 38(4): 587 − 590.

    Zhu Baohua, Li Xiaoting, Ding Kaiqiang. Research on hybrid diode-fiber laser welding for qluminum alloy[J]. Applied Laser, 2018, 38(4): 587 − 590.
  • Related Articles

    [1]XIA Peiyun, FENG Xiaosong, WANG Chunming, XU Cheng, HUANG Hui, HE Jianli. Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 39-44. DOI: 10.12073/j.hjxb.20220511003
    [2]CONG Baoqiang, OUYANG Ruijie, QIAO Liuping. Weld formation and porosity of 2014-T6 aluminum alloy welds produced by cold metal transfer process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 37-40.
    [3]LI Yanjun, KANG Ju, WU Aiping, ZHAO Gang, GAO Yanjun, ZOU Guisheng. Influence of TIG welding parameters on porosity in LD10 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 37-40.
    [4]LEI Zhenglong, LI Ying, CHEN Yanbin, SUN Zhongshao, ZHANG Yikun. Effect of process parameters on porosity formation ratio in dual-beam laser welding of aluminum alloys with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 40-44.
    [5]ZHANG Jing, SHAN Jiguo, WEN Peng, REN Jialie. Effects of welding parameters on weld porosity during CO2 laser welding of die-cast magnesium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 17-20,24.
    [6]GONG Shuili, YAO Wei, Steve Shi. Porosity formation mechanisms and controlling technique for laser penetration welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 60-62.
    [7]WANG Wei, XU Guangyin, WANG Xuyou, LEI Zhen, QIN Guoliang, LIN Shangyang. Porosity prevention of 1420 Al-Li alloy for laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 5-7,26.
    [8]ZHAO Lin, TIAN Zhiling, PENG Yun, XIAO Hongjun, ZHAO Xiaobing. Laser welding of high nitrogen steel 1Cr22Mn16N Ⅰ.Influence of shielding gas composition and heat input on N-content and porosity of weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 89-91,95.
    [9]WANG Wei, XU Guang-ying, DUAN Ai-qin, WANG Xu-you, BA Rui-zhang. Porosity formation mechanism in laser welding 1420 Al-Li alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 59-62.
    [10]ZHAO Lin, ZHANG Xu-dong, CHEN Wu-zhu, BAO Gang. Repression of porosity with beam weaving laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 29-32.
  • Cited by

    Periodical cited type(4)

    1. 洪小龙,黄本生,李天宁,黄思语. 几种常见焊接工艺热源模型的研究进展. 材料热处理学报. 2023(05): 25-38 .
    2. 王海涛,杨博. 直流接触器触头电弧侵蚀特性. 电力工程技术. 2023(03): 53-60 .
    3. 陈宸,周方正,李成龙,刘新锋,贾传宝,徐瑶. 融合空间和通道特征的等离子弧焊熔池熔透状态预测方法. 焊接学报. 2023(04): 30-38+131 . 本站查看
    4. 孙连北,魏坤霞,孟涛,张尧成,魏伟. 等离子弧焊Q345B和430不锈钢异种接头的微观组织与性能. 焊接. 2022(05): 19-23 .

    Other cited types(1)

Catalog

    Article views (370) PDF downloads (67) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return