Citation: | MIAO Yugang, LI Chunwang, SHAO Dandan, ZHAO Yuyang, WEI Chao, ZHANG Benshun. Carbon steel bypass-current wire-heating PAW additive manufacturing forming and tissue performance modulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 55-60. DOI: 10.12073/j.hjxb.20220109001 |
卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19 − 23.
Lu Bingheng. Additive manufacturing--Current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19 − 23.
|
Leung C L A, Marussi S, Towrie M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing[J]. Acta Materialia, 2019, 166: 294 − 305. doi: 10.1016/j.actamat.2018.12.027
|
Osipovich K S, Astafurova E G, Chumaevskii A V, et al. Gradient transition zone structure in “steel–copper” sample produced by double wire-feed electron beam additive manufacturing[J]. Journal of Materials Science, 2020, 55(22): 9258 − 9272. doi: 10.1007/s10853-020-04549-y
|
Rodrigues T A, Duarte V, Miranda R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121. doi: 10.3390/ma12071121
|
Liu J, Xu Y, Ge Y, et al. Wire and arc additive manufacturing of metal components: a review of recent research developments[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(1-2): 1 − 50.
|
耿海滨, 熊江涛, 黄丹, 等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接, 2015(11): 17 − 21. doi: 10.3969/j.issn.1001-1382.2015.11.003
Geng Haibin, Xiong Jiangtao, Huang Dan, et al. Research status and trends of wire and arc additive manufacturing technology[J]. Welding Joining, 2015(11): 17 − 21. doi: 10.3969/j.issn.1001-1382.2015.11.003
|
Rodrigues T A, Duarte V, Avila J A, et al. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties[J]. Additive Manufacturing, 2019, 27: 440 − 450. doi: 10.1016/j.addma.2019.03.029
|
冯曰海, 汤荣华, 刘思余, 等. 308L不锈钢热丝等离子弧增材构件组织和性能[J]. 焊接学报, 2021, 42(5): 77 − 83.
Feng Yuehai,Tang Ronghua, Liu Siyu, et al. Microstructures and mechanical properties of stainless steel component deposited with 308L wire by hot wire plasma arc additive manufacturing process[J]. Transactions of the China Welding Institution, 2021, 42(5): 77 − 83.
|
Zhao Pengkang, Fang Kui, Tang Cheng, et al. Effect of interlayer cooling time on the temperatuer field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.
|
Wu B, Pan Z, Ding D, et al. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2018, 258: 97 − 105. doi: 10.1016/j.jmatprotec.2018.03.024
|
Xu X, Gangul S, Ding J, et al. Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing[J]. Materials & Design, 2018, 160: 1042 − 1051.
|
柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Bo Jiuyang. Microstructue evolution of 2219-Al duiring GTA based additive manufacuturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017.
|
苗玉刚, 李春旺, 张鹏, 等. 不锈钢旁路热丝等离子弧增材制造接头特性分析[J]. 焊接学报, 2018, 39(6): 35 − 38.
Miao Yugang, Li Chunwang, Zhang Peng, et al. Joint characteristics of stainless steel bypass-current wireheating PAW on additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(6): 35 − 38.
|
[1] | LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003 |
[2] | ZENG Daoping, AN Tongbang, ZHENG Shaoxian, MA Chengyong. Effect of heat input on microstructure and properties of weld seam of marine 440 MPa grade HSLA steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 74-82. DOI: 10.12073/j.hjxb.20220911001 |
[3] | LI Hongwei, ZHAO Zhiyi, XUE Rundong. Effect of heat input on the microstructure and hardness of SAF2507 super duplex stainless steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 20-26. DOI: 10.12073/j.hjxb.20210728001 |
[4] | XIAO Xiaoming, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of heat input on microstructure and properties of weld metal in MAG welding of weathering steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 41-46. |
[5] | QIN Hua, LIU Zhengjun, SU Yunhai, LIN Jinliang. Effect of heat input on microstructure and properties of welded joint of BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 103-106. |
[6] | CUI Dianzhong, LU Sheng, CUI Qingqing, LIU Bin. Effect of heat input on microstructure and mechanical properties of CMT welding-brazing joint between 5052 aluminum alloy and galvanized Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 82-86. |
[7] | WEI Jinshan, QI Yanchang, PENG Yun, TIAN Zhilin. Effect of heat input on the microstructure and properties of weld metal welding in a 800 MPa grade heavy steel plate with narrow gap groove[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 31-34. |
[8] | Menggenbagen, MA Chengyong, PENG Yun, TIAN Zhiling, LIN Wenguang. Effect of heat input on microstructure and low temperature impact resistance of welded joint of 9Ni steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 69-72. |
[9] | GAO Jun, YAO Zekun, LIU Yingying. Effects of electron beam heat input on microstructure and micro-hardness of Ti-24Al-15Nb-1.5Mo/TC11 dual alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 33-36,40. |
[10] | PENG Yun, XU Lianghong, TIAN Zhiling, ZHANG Xiaomu. Effect of heat input on microstructure and mechanical properties of the high strength aluminum alloy welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 17-21. |
1. |
任成龙. 激光切割工艺对焊接残余应力预测精度影响. 焊接技术. 2025(02): 75-78 .
![]() | |
2. |
陈建均. 深远海风电工程水下修复工艺的应用. 广州航海学院学报. 2024(04): 59-64 .
![]() |