Citation: | FENG Daochen, ZHENG Wenjian, GAO Guoben, ZHOU Zhou, HE Yanming, YANG Jianguo. Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 43-48. DOI: 10.12073/j.hjxb.20220101006 |
Li Junchen, Meng Xiangchen, Wan Long. Welding of high entropy alloys: Progresses, challenges and perspectives[J]. Journal of Manufacturing Processes, 2021, 68: 293 − 331. doi: 10.1016/j.jmapro.2021.05.042
|
董勇. Al-Cr-Fe-Ni-M系多相高熵合金微观组织与力学性能的基础研究[D]. 大连: 大连理工大学, 2016.
Dong Yong. Fundamental study on microstructure and mechanical properties in multi-phase Al-Cr-Fe-Ni-M high entropy alloys[D]. Dalian: Dalian University of Technology, 2016.
|
Li Peng, Wang Shuai, Xia Yueqing, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. Journal of Materials Science & Technology, 2020, 45(10): 59 − 69.
|
陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程, 2018, 10(1): 31 − 39. doi: 10.3969/j.issn.1674-6457.2018.01.004
Chen Guoqing, Shu Xi, Liu Junpeng, et al. Development status of applications of vacuum electron beam welding technology[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 31 − 39. doi: 10.3969/j.issn.1674-6457.2018.01.004
|
陈国庆, 滕新颜, 树 西, 等. W6钢电子束焊后表面重熔硬化[J]. 焊接学报, 2021, 42(12): 1 − 6. doi: 10.12073/j.hjxb.20210413002
Chen Guoqing, Ten Xinyan, Shu Xi, et al. Hardening effect of electron beam surface remelting on W6 steel[J]. Transactions of the China Welding Institution, 2021, 42(12): 1 − 6. doi: 10.12073/j.hjxb.20210413002
|
Yih-Farn Kao, Tsung-Dar Lee, Swe-Kai Chen, et al. Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corrosion Science, 2010, 52: 1026 − 1034. doi: 10.1016/j.corsci.2009.11.028
|
Chai Wenke, Lu Tao, Pan Ye. Corrosion behaviors of FeCoNiCrx (x=0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116: 106654. doi: 10.1016/j.intermet.2019.106654
|
Qiu Xingwu, Liu Chunge. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216 − 220. doi: 10.1016/j.jallcom.2012.11.100
|
Zhang Xiaorong, Guo Jing, Zhang Xiaohui, et al. Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution[J]. Journal of Alloys and Compounds, 2019, 775: 565 − 570. doi: 10.1016/j.jallcom.2018.10.081
|
Shi Yunzhu, Liam Collins, Feng Rui, et al. Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance[J]. Corrosion Science, 2018, 133: 120 − 131. doi: 10.1016/j.corsci.2018.01.030
|
Fu Yu, Li Jun, Luo Hong, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 80: 217 − 233.
|
Sokkalingam R, Sivaprasad K, Duraiselvam M, et al. Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior[J]. Journal of Alloys and Compounds, 2020, 817: 153163.
|
Shi Peijian, Li Runguang, Li Yi, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373: 912 − 918. doi: 10.1126/science.abf6986
|
Rahul M R, Sumanta Samal, Venugopal S, et al. Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 749: 1115 − 1127. doi: 10.1016/j.jallcom.2018.03.262
|
Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Materials Science & Engineering A, 2016, 675: 99 − 109.
|
Gao Xuzhou, Lu Yiping, Zhang Bo, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia, 2017, 141: 59 − 66. doi: 10.1016/j.actamat.2017.07.041
|
Wu Zhenggang, David S A, Feng Zhili, et al. Weldability of a high entropy CrMnFeCoNi alloy[J]. Scripta Materialia, 2016, 124: 81 − 85. doi: 10.1016/j.scriptamat.2016.06.046
|
Shi Yunzhu, Mo Jingke, Zhang Fengyuan, et al. In-situ visualization of corrosion behavior of AlxCoCrFeNi highentropy alloys during electrochemical polarization[J]. Journal of Alloys and Compounds, 2020, 844: 156014. doi: 10.1016/j.jallcom.2020.156014
|
Wani I S, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Materials Research Letters, 2016, 4: 174 − 179.
|
郑文健, 贺艳明, 杨建国, 等. 焊接熔池凝固过程联生结晶晶体学取向对线性不稳定动力学的影响[J]. 机械工程学报, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062
Zheng Wenjian, He Yanming, Yang Jianguo, et al. Influence of the crystal orientation of epitaxial solidification on the linear instability dynamic during the solidification of welding pool[J]. Journal of Mechanical Engineering, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062
|
石芸竹. AlxCoCrFeNi系高熵合金微观组织与耐蚀性能研究[D]. 北京: 北京科技大学, 2018.
Shi Yunzhu. Microstructures and corrosion-resistance properties of the AlxCoCrFeNi high-entropy alloys[D]. Beijing: University of Science and Technology Beijing, 2018.
|
陈倩倩, 李东, 贺聪聪, 等. 大厚度电子束焊接接头厚度方向的组织差异性[J]. 焊接学报, 2015, 36(9): 79 − 82.
Chen Qianqian, Li Dong, He Congcong, et al. Microstructure difference analysis of large thickness welded joint with EBW[J]. Transactions of the China Welding Institution, 2015, 36(9): 79 − 82.
|
Han Zhenhua, Ren Weining, Yang Jun, et al. The corrosion behavior of ultra-fine grained CoNiFeCrMn highentropy alloys[J]. Journal of Alloys and Compounds, 2020, 816: 152583. doi: 10.1016/j.jallcom.2019.152583
|
Xu Xiang, Lu Haifei, Su Youyu, et al. Comparing corrosion behavior of additively manufactured Cr-rich stainless steel coating between conventional and extreme high-speed laser metal deposition[J]. Corrosion Science, 2022, 195: 109976. doi: 10.1016/j.corsci.2021.109976
|
[1] | WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001 |
[2] | GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003 |
[3] | WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001 |
[4] | ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002 |
[5] | CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001 |
[6] | BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003 |
[7] | ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001 |
[8] | YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162 |
[9] | YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205 |
[10] | CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4. |