Advanced Search
HE Peng, ZHANG Ling. Development of intelligent brazing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 124-128. DOI: 10.12073/j.hjxb.20170429
Citation: HE Peng, ZHANG Ling. Development of intelligent brazing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 124-128. DOI: 10.12073/j.hjxb.20170429

Development of intelligent brazing technology

More Information
  • Received Date: November 02, 2016
  • Intelligent brazing as one part of the five major projects in Intelligent Manufacturing Engineering, based on the new brazing material, new technology and the new development of computer skills, control theory, artificial intelligence, will enter into a totally new stage of development. At the same time, the high speed of the internet provides a platform for the database technology, expert system, artificial neural network and fuzzy control system of brazing. It is concluded that the intelligent brazing development is the inevitable trend of the progress of the world. In this paper, it proposed the intelligent brazing concept, and designed the process of the overall intelligent brazing, introducing the knowledge database, expert system, neural network and fuzzy control theory, furtherly, analyzing the intelligent brazing technology. In the end, the development trend of intelligent brazing is discussed.
  • Zhou Ji. Intelligent manufacturing: main direction of "made in china 2025"[J]. China Mechanical Engineering, 2015, 26(17): 2273-2284.
    Roberts P M. Introduction to Brazing Technology[M]. Boca Raton: Crc Press, 2016.
    Sui Y, Luo H,Lv Y, et al. Influence of brazing technology on the microstructure and properties of YG20C cemented carbide and 16Mn steel joints[J]. Welding in the World, 2016, 18(1): 1-7.
    Rybaulin V M, Skorobatyuk A V, Mikitas A V. Brazing of absorbers of planar solar heating collectors produced from materials of the Cu–CuZn system[J]. Welding International, 2015, 30(2): 1-8.
    Makwana P, Shome M, Goecke S F, et al. Wetting length in gas metal arc brazing of galvanised steel[J]. Science & Technology of Welding & Joining, 2016, 15(3): 1-4.
    Xu H. Study and implementation of expert system based on prototype[J]. Computer Development & Applications, 2008, 7(2): 1-8.
    Wu Y, Kang H, Qu P. Study on expert system for aluminum alloy soldering[J]. Electric Welding Machine, 2005, 9(3): 1-7.
    Xu Z, Xu H, Fu Y. Research on induction brazing diamond system with fuzzy control[J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2007, 18(10): 1222-1225.
    王学东, 姚 舜. 电子束钎焊温度模糊控制系统[J]. 焊接学报, 2006, 27(5): 73-76. Wang Xuedong, Yao Shun. Electron beam brazing temperature fuzzy control system[J]. Transactions of the China Welding Institution, 2006, 27(5): 73-76.
    贺无名, 余强国, 蔡志瑞, 等. 基于B样条模糊神经网络的钎焊炉温度控制[J]. 制造业自动化, 2011, 33(12): 129-131. He Wuming, Yu Qiangguo, Cai Zhirui, et al. Temperature control in brazing furnace based on B-spline fuzzy neural network[J]. Manufacturing Automation, 2011, 33(12): 129-131.
    Zhi L I, Zhang Y. Prediction of soldering forming based on neural network[J]. Hot Working Technology, 2013, 42(1): 148-268.
    Du Junyuan, Jiang Qing, Yu Haiqing. Development of automatic swilunvel turntable welding machine for condenser based on fuzzy control[J]. Computer Measurement & Control, 2016, 24(6): 87-90.
    汪 航. Ag-Cu-X(X=Gd, Y)体系的热力学优化与计算[D]. 长沙: 中南大学, 2008.
    Ratts E B, Murphey Y L, Zhou Y. Thermal modeling of controlled atmosphere brazing process using virtual reality technology[J]. Applied Thermal Engineering, 2000, 20(17): 1667-1678.
    Ping P. Design of large aluminum vacuum brazing furnace—major specifications and heating control program[J]. Chinese Journal of Vacuum Science and Technology, 2004, 6(1): 016-020.
    丁正春, 孙明亮. 红外温度传感器在钎焊专机中的应用[J]. 焊接技术, 2003, 32(5): 49-50. Ding Zhengchun, Sun Mingliang. Application of infrared temperature sensor in brazing special machine[J]. Welding Technology, 2003, 32(5): 49-50.
    谢军辉. 自动火焰钎焊技术的应用与分析[J]. 焊接技术, 2002, 31(1): 23-25. Xie Junhui. Application and analysis of automatic torch brazing technology[J]. Welding Technology, 2002, 31(1): 23-25.
    Demianová K, Behúlová M, Milan O, et al. Brazing of aluminum tubes using induction heating[J]. Advanced Materials Research, 2012, 463(6): 1405-1409.
    王 焜. 激光软钎焊智能定位系统研制[D]. 南京: 南京理工大学, 2001.
  • Related Articles

    [1]FANG Naiwen, HUANG Ruisheng, WU Pengbo, MA Yiming, SUN Laibo, CAO Hao, ZOU Jipeng. Study on microstructure and properties of laser flux-cored wire joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 61-69. DOI: 10.12073/j.hjxb.20221013001
    [2]FANG Naiwen, HUANG Ruisheng, YAN Dejun, YANG Yicheng, MA Yiming, LENG Bing. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 70-75. DOI: 10.12073/j.hjxb.20200502001
    [3]YANG Dongqing, XIONG Hanying, HUANG Yong, PENG Yong, WANG Kehong. Microstructure and properties of ultra-high strength steel joints welded with high nitrogen austenite wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 44-48. DOI: 10.12073/j.hjxb.20200830001
    [4]QIN Guoliang, FENG Chao, JIANG Haihong, JIANG Zili, GENG Peihao. Microstructure and properties of weld by high-speed tandem TIG welding of different arc power matching[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 39-44. DOI: 10.12073/j.hjxb.2019400285
    [5]LIU Lu, WANG Jiayou, LI Dayong, ZHANG Guangjun. Low temperature brittle fracture resistance of asymmetrical synchronous double-sided arc welded joint of 10Ni5CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 109-113.
    [6]ZHAO Hongyun, LIU Hongwei. Microstructure and properties of TIG welded 22MnB5 ultra high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 67-69,78.
    [7]LIU Zhengjun, WANG Chuao, SU Yunhai. Microstructure and performance of low matched welded joint by vibratory welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 92-95.
    [8]XUE Gang, DENG Wanping, WANG Renfu. Influences of weld toe treatments on low-cycle fatigue ability of 10Ni5CrMoV steel weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 105-108.
    [9]XUE Gang, WANG Renfu. Influence of TIGdressing on fatigue property of 10Ni5CrMoV steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 77-80.
    [10]PAN Kegeng, HUANG Chengquan, FAN Hongfeng. Microstructures and properties of three kinds of thermal barrier coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 49-52.
  • Cited by

    Periodical cited type(6)

    1. 郑文健,李正阳,王杏华,宫旭辉,闫德俊,赖少波,杨建国. 热传导模式对电弧增材制造800 MPa级船用高强钢组织与性能的影响. 焊接学报. 2024(05): 38-46 . 本站查看
    2. 彭言言,吕晓春,安洪亮,徐锴,胡景晟. 10Ni5CrMoV钢热循环过程中组织及成分演变规律. 焊接. 2023(04): 7-14 .
    3. 郝红,丁敏. 10Ni5CrMoV钢焊缝针状铁素体相变热力学分析. 电焊机. 2022(08): 81-88 .
    4. 王晓磊,肖军. LNG储罐9%Ni钢GMAW-P自动立焊接头组织与性能研究. 电焊机. 2021(11): 106-109+150 .
    5. 杨东青,熊涵英,黄勇,彭勇,王克鸿. 高氮奥氏体焊丝焊接超高强钢接头组织和性能. 焊接学报. 2020(12): 44-48+99-100 . 本站查看
    6. 张红霞. 基于低合金可焊接高强度结构. 中国金属通报. 2019(01): 112+114 .

    Other cited types(1)

Catalog

    Article views (402) PDF downloads (393) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return