Citation: | LV Zongliang, LIU Jinglin, HAN Zhenyu, ZHU Dong, WAN Long, HUANG Yongxian. Characteristic analysis of friction additive assisted Ti/Al friction stir lap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 69-74. DOI: 10.12073/j.hjxb.20211229003 |
Liu H J, Zhou L, Liu Q W. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy[J]. Materials and Design, 2010, 31: 1650 − 1655. doi: 10.1016/j.matdes.2009.08.025
|
黄永宪, 吕宗亮, 万龙, 等. 钛/铝异质金属搅拌摩擦焊技术研究进展[J]. 航空学报, 2018, 39(11): 1 − 12.
Huang Yongxian, Lv Zongliang, Wan Long, et al. Research progress of friction stir welding technology for Ti/Al dissimilar metals[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 1 − 12.
|
Fujii H, Sun Y F, Kato H, Nakata K. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints[J]. Materials Science and Engineering A, 2010, 527: 3386 − 3391. doi: 10.1016/j.msea.2010.02.023
|
Huang Y X, Lv Z L, Wan L, et al. A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy[J]. Materials Letters, 2017, 207(15): 172 − 175.
|
李 梁, 孙建科, 孟祥军. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004, 21(5): 19 − 24. doi: 10.3969/j.issn.1009-9964.2004.05.005
Li Liang, Sun Jianke, Meng Xiangjun. Application status and development prospect of titanium alloy[J]. Titanium Industry Progress, 2004, 21(5): 19 − 24. doi: 10.3969/j.issn.1009-9964.2004.05.005
|
Chen Y C, Quan N, Ke L M. Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys[J]. Transations Nonferrous Metals Society of China, 2012, 22: 299 − 304.
|
陈玉华, 董春林, 倪泉, 等. 钛合金/铝合金搅拌摩擦焊接头的显微组织[J]. 中国有色金属学报, 2010, 20: s211 − s214. doi: 10.1016/S1003-6326(10)60041-6
Chen Yuhua, Dong Chunlin, Ni Quan, et al. Microstructure of friction stir welded joint of Ti/Al alloys[J]. The Chinses Journal of Nonferrous Metals, 2010, 20: s211 − s214. doi: 10.1016/S1003-6326(10)60041-6
|
Chen Y C, Nakata K. Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys[J]. Materials and Design, 2009, 30: 469 − 474. doi: 10.1016/j.matdes.2008.06.008
|
Bang H S, Bang H S, Song H J, et al. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti-6%Al-4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding[J]. Materials and Design, 2013, 51: 544 − 551. doi: 10.1016/j.matdes.2013.04.057
|
Li B, Zhang Z H, Shen Y F, et al. Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties[J]. Materials and Design, 2014, 53: 838 − 848. doi: 10.1016/j.matdes.2013.07.019
|
Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706. doi: 10.1016/j.pmatsci.2020.100706
|
Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering:R, 2010, 50(1): 1 − 78.
|
K V, Semiatin S L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys[J]. Scripta Materialia, 2000, 43(8): 743 − 749. doi: 10.1016/S1359-6462(00)00480-2
|
Lv Z L, Han Z Y, Zhu D, et al. Enlarged-end tool for friction stir lap welding towards hook defect controlling[J]. China Welding, 2020, 29(1): 1 − 7.
|
Prado R A, Murr L E, Shindo D J, et al. Tool wear in the friction-stir welding of aluminum alloy 6061 + 20%Al2O3: a preliminary study[J]. Scripta Materialia, 2001, 45(1): 75 − 80. doi: 10.1016/S1359-6462(01)00994-0
|
孙天娇. Ti-6Al-4V/Al-12Si界面金属间化合物生长规律及转变机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
Sun Tianjiao. Growth and Transformation Mechanism of Intermetallic Compounds at the Interface of Ti-6Al-4V/Al-12Si[D]. Harbin: Harbin Institute of Technology, 2011.
|
Luo J G, Acoff V L. Using cold roll bonding and annealing toprocess Ti/Al multi-layered composites from elemental foils[J]. Materials Science and Engineering A, 2004, 379: 164 − 172. doi: 10.1016/j.msea.2004.01.021
|
[1] | AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002 |
[2] | ZHANG Hua, GUO Qilong, ZHAO Changyu, LIN Sanbao, SHI Gongqi. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 1-5. DOI: 10.12073/j.hjxb.20190513001 |
[3] | YAN Chunyan, YUAN Yuan, ZHANG Kezhao, WU Lichao, WANG Baosen. Investigation on cold cracking susceptibility of X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 41-46. DOI: 10.12073/j.hjxb.2019400310 |
[4] | RUAN Ye, SU Jinlong, QIAO Jianyi, QIU Xiaoming, XING Fei. Effect of humidity on crack sensitivity of aluminum alloy weld joint and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 89-93. DOI: 10.12073/j.hjxb.2019400018 |
[5] | YAO Qianyu, DENG Caiyan, GONG Baoming, WANG Dongpo. The sensitivity analysis of parameters involved in engineering critical assessment for the submarine pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 41-44. |
[6] | ZHANG Jingqiang, YANG Jianguo, XUE Gang, WANG Jiajie, FANG Hongyuan. Hydrogen induced cracking sensibility of welded joint based on tensile test with hydrogen pre-charging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 89-92. |
[7] | ZHANG Qunbing, NIU Jing, ZHAO Pengfei, HUANG Yong, LI Zhigang, ZHANG Jianxun. Influence of preheating temperature on cold cracking sensitivity of 12Cr10Co3W2Mo heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 87-91. |
[8] | ZHANG Yuanjie, PENG Yun, MA Chengyong, PENG Xinna, TIAN Zhiling, LU Jiansheng. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 53-56. |
[9] | LAN Liangyun, QIU Chunlin, ZHAO Dewen, GAO Xiuhua. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 41-44. |
[10] | DU Yi, ZHANG Tian-hong, ZHANG Jun-xu. Analysis on welding cold crack sensibility of 10Ni8CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 93-96. |
1. |
刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
![]() | |
2. |
税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
![]() | |
3. |
刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
![]() | |
4. |
代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 .
![]() | |
5. |
王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
![]() | |
6. |
甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
![]() | |
7. |
陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
![]() | |
8. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
9. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
10. |
张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 .
![]() |