Advanced Search
LV Zongliang, LIU Jinglin, HAN Zhenyu, ZHU Dong, WAN Long, HUANG Yongxian. Characteristic analysis of friction additive assisted Ti/Al friction stir lap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 69-74. DOI: 10.12073/j.hjxb.20211229003
Citation: LV Zongliang, LIU Jinglin, HAN Zhenyu, ZHU Dong, WAN Long, HUANG Yongxian. Characteristic analysis of friction additive assisted Ti/Al friction stir lap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 69-74. DOI: 10.12073/j.hjxb.20211229003

Characteristic analysis of friction additive assisted Ti/Al friction stir lap welding

More Information
  • Received Date: December 28, 2021
  • Available Online: May 30, 2022
  • Friction stir lap welding assisted by friction additive (FA-FSLW) was proposed to solve the following problems during Ti/Al dissimilar friction stir welding process: low joint strength and wear of tool. This new technology contains the advantages of solid state welding, such as low heat input, thinner intermetallic compounds layer. This study selected 6082 aluminum alloys as the pre-deposition layer to assist the bonding between 3 mm thick 2A12 aluminum alloy and 4 mm thick TC4 titanium alloy plates. The tool was set into the 6082 deposition without touching the titanium surface. The joint with the maximum tensile load of 12.2 kN was obtained. The study found that the larger the interface offset, the lower the load bearing. The Ti and Al elements have undergone significant inter-diffusion during FA-FSLW process. The element of Si was segregated at the interface, and then metallurgical reacted with Ti and Al, to form a Ti-Al-Si intermetallic compound layered of nano-level, which established the foundation for high load-bearing of the joint.
  • Liu H J, Zhou L, Liu Q W. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy[J]. Materials and Design, 2010, 31: 1650 − 1655. doi: 10.1016/j.matdes.2009.08.025
    黄永宪, 吕宗亮, 万龙, 等. 钛/铝异质金属搅拌摩擦焊技术研究进展[J]. 航空学报, 2018, 39(11): 1 − 12.

    Huang Yongxian, Lv Zongliang, Wan Long, et al. Research progress of friction stir welding technology for Ti/Al dissimilar metals[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 1 − 12.
    Fujii H, Sun Y F, Kato H, Nakata K. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints[J]. Materials Science and Engineering A, 2010, 527: 3386 − 3391. doi: 10.1016/j.msea.2010.02.023
    Huang Y X, Lv Z L, Wan L, et al. A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy[J]. Materials Letters, 2017, 207(15): 172 − 175.
    李 梁, 孙建科, 孟祥军. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004, 21(5): 19 − 24. doi: 10.3969/j.issn.1009-9964.2004.05.005

    Li Liang, Sun Jianke, Meng Xiangjun. Application status and development prospect of titanium alloy[J]. Titanium Industry Progress, 2004, 21(5): 19 − 24. doi: 10.3969/j.issn.1009-9964.2004.05.005
    Chen Y C, Quan N, Ke L M. Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys[J]. Transations Nonferrous Metals Society of China, 2012, 22: 299 − 304.
    陈玉华, 董春林, 倪泉, 等. 钛合金/铝合金搅拌摩擦焊接头的显微组织[J]. 中国有色金属学报, 2010, 20: s211 − s214. doi: 10.1016/S1003-6326(10)60041-6

    Chen Yuhua, Dong Chunlin, Ni Quan, et al. Microstructure of friction stir welded joint of Ti/Al alloys[J]. The Chinses Journal of Nonferrous Metals, 2010, 20: s211 − s214. doi: 10.1016/S1003-6326(10)60041-6
    Chen Y C, Nakata K. Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys[J]. Materials and Design, 2009, 30: 469 − 474. doi: 10.1016/j.matdes.2008.06.008
    Bang H S, Bang H S, Song H J, et al. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti-6%Al-4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding[J]. Materials and Design, 2013, 51: 544 − 551. doi: 10.1016/j.matdes.2013.04.057
    Li B, Zhang Z H, Shen Y F, et al. Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties[J]. Materials and Design, 2014, 53: 838 − 848. doi: 10.1016/j.matdes.2013.07.019
    Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706. doi: 10.1016/j.pmatsci.2020.100706
    Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering:R, 2010, 50(1): 1 − 78.
    K V, Semiatin S L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys[J]. Scripta Materialia, 2000, 43(8): 743 − 749. doi: 10.1016/S1359-6462(00)00480-2
    Lv Z L, Han Z Y, Zhu D, et al. Enlarged-end tool for friction stir lap welding towards hook defect controlling[J]. China Welding, 2020, 29(1): 1 − 7.
    Prado R A, Murr L E, Shindo D J, et al. Tool wear in the friction-stir welding of aluminum alloy 6061 + 20%Al2O3: a preliminary study[J]. Scripta Materialia, 2001, 45(1): 75 − 80. doi: 10.1016/S1359-6462(01)00994-0
    孙天娇. Ti-6Al-4V/Al-12Si界面金属间化合物生长规律及转变机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    Sun Tianjiao. Growth and Transformation Mechanism of Intermetallic Compounds at the Interface of Ti-6Al-4V/Al-12Si[D]. Harbin: Harbin Institute of Technology, 2011.
    Luo J G, Acoff V L. Using cold roll bonding and annealing toprocess Ti/Al multi-layered composites from elemental foils[J]. Materials Science and Engineering A, 2004, 379: 164 − 172. doi: 10.1016/j.msea.2004.01.021
  • Related Articles

    [1]WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001
    [2]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20231128003
    [3]WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001
    [4]ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002
    [5]CHEN Yanxing, LIU Xiuguo, ZHAO Yangyang, GONG Baoming, WANG Ying, LI Chengning. Microstructure and dynamic fracture behaviors of 17-4PH stainless steel fabricated by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 1-9. DOI: 10.12073/j.hjxb.20220306001
    [6]BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
    [7]ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001
    [8]YANG Tianyu, ZHANG Penglin, YIN Yan, LIU Wenzhao, ZHANG Ruihua. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 100-106. DOI: 10.12073/j.hjxb.2019400162
    [9]YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205
    [10]CAO Jian, FENG Ji-cai, LI Zhuo-ran. Selection of interlayer for field-assisted self-propagated high temperature joining of TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 1-4.

Catalog

    Article views (245) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return