Advanced Search
ZHANG Kun, ZOU Zongxuan, LIU Ye, LIU Zhengjun. Multi-sensor data collaborative sensing algorithm for aluminum alloy TIG welding pool state[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 50-55. DOI: 10.12073/j.hjxb.20211025001
Citation: ZHANG Kun, ZOU Zongxuan, LIU Ye, LIU Zhengjun. Multi-sensor data collaborative sensing algorithm for aluminum alloy TIG welding pool state[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 50-55. DOI: 10.12073/j.hjxb.20211025001

Multi-sensor data collaborative sensing algorithm for aluminum alloy TIG welding pool state

More Information
  • Received Date: October 24, 2021
  • Available Online: April 28, 2022
  • Aiming at the non-linear correspondence between the real-time state of welding process parameters and the three-dimensional size of the weld pool in the tungsten inert gas arc (TIG) welding process of aluminum alloy, a multi-sensor TIG welding process based on cyber-physical fusion is studied to establish a multi-sensor TIG welding process collaborative sensing calculation method. First, build a TIG welding process molten pool state information physical fusion system architecture consisting of infrared temperature sensors, arc shape sensors, arc energy sensors and welding position sensors. Then, considering the influence of the environment and measurement noise in the welding process, a three-dimensional parameter state sensing strategy of the length, width and depth of the molten pool based on the exchange of temperature, position, and energy sensor information is designed. Based on the asynchronous and heterogeneous characteristics of multi-sensor data, a new method based on Multi-sensor data collaborative sensing algorithm for the state of the molten pool in the welding process based on trace Kalman filtering. Finally, taking the TIG welding process of 7075 super-hard aluminum alloy as the test object, the test results show that the proposed algorithm can calculate the welding pool parameter results in real time according to the motion characteristics of the welding torch and the arc in the welding seam of the TIG welding process. The error of the calculation results of the weld width and weld height can be controlled within 10%, and the response time of the algorithm is within 0.3 s, which can accurately evaluate the real-time state of the weld pool.
  • 刘政军, 张琨, 刘长军. 铝合金振动焊接过程非线性时间序列模 型分析[J]. 焊接学报, 2019, 40(3): 85 − 90.

    Zhang Kun, Liu Zhengjun, Liu Changjun. Study on nonlinear time series model of vibration welding process of aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(3): 85 − 90.
    陈琪昊, 林三宝, 杨春利, 等. 周期超声对铝合金TIG焊缝成形影响机制分析[J]. 焊接学报, 2017, 38(3): 9 − 12.

    Chen Qihao, Lin Sanbao, Yang Chunli, et al. Analysis on influencing mechanism of periodical ultrasound on formation of TIG weld of aluminum alloys[J]. Transactions of the China Welding Institution, 2017, 38(3): 9 − 12.
    何笑英, 黄健康, 石玗, 等. 基于网格激光的TIG焊熔池三维表面凹凸性分析[J]. 焊接学报, 2017, 38(1): 65 − 68.

    He Xiaoying, Huang Jiankang, Shi Yu, et al. Analysis on concavity and convexity of TIG weld pool threedimensional surface based on grid lasers[J]. Transactions of the China Welding Institution, 2017, 38(1): 65 − 68.
    黄健康, 陈会子, 杨茂鸿, 等. 基于示踪粒子的摆动TIG填丝焊熔池行为数值分析[J]. 焊接学报, 2019, 40(6): 7 − 13. doi: 10.12073/j.hjxb.2019400146

    Huang Jiankang, Chen Huizi, Yang Maohong, et al. Numerical analysis of the behavior of swing TIG wire-filled weld pool based on tracer particles[J]. Transactions of the China Welding Institution, 2019, 40(6): 7 − 13. doi: 10.12073/j.hjxb.2019400146
    刘政军, 张琨. 超硬铝合金搅拌摩擦焊全局动态鲁棒控制技术[J]. 焊接学报, 2019, 40(4): 73 − 78. doi: 10.12073/j.hjxb.2019400103

    Liu Zhengjun, Zhang Kun. Global dynamic robust control of friction stir welding of high strength aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(4): 73 − 78. doi: 10.12073/j.hjxb.2019400103
    Mugada K K, Adepu K. Influence of ridges shoulder with polygonal pins on material flow and friction stir weld characteristics of 6082 aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 32: 625 − 634. doi: 10.1016/j.jmapro.2018.03.034
    Azarniya A , Taheri A K , Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspect- ive[J]. Journal of Alloys and Compounds, 2019, 781: 945 − 983.
    Kumar G P, Koppad P G, Keshavamurthy R, et al. Microstructure and mechanical behaviour of in situ fabricated AA6061-TiC metal matrix composites[J]. Archives of Civil & Mechanical Engineering, 2017, 17(3): 535 − 544.
    He K, Li X. Time-frequency feature extraction of acoustic emission signals in aluminum alloy MIG welding process based on SST and PCA[J]. IEEE Access, 2019, 7: 113988 − 113998. doi: 10.1109/ACCESS.2019.2935117
    Sardarmehni T, Keighobadi J, Menhaj M B. Robust predictive control of lambda in internal combustion engines using neural networks[J]. Archives of Civil and Mechanical Engineering, 2013, 13(4): 432 − 443. doi: 10.1016/j.acme.2013.05.003
    Zeng X, Yu J, Fu D, et al. Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates[J]. Vacuum, 2018, 155: 364 − 375. doi: 10.1016/j.vacuum.2018.06.033
    Huang Y, Xie Y, Meng X, et al. Numerical design of high depth-to-width ratio friction stir welding[J]. Journal of Materials Processing Technology, 2018, 252: 233 − 241. doi: 10.1016/j.jmatprotec.2017.09.029
    Li Z, Fan G, Guo Q, et al. Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419 − 427. doi: 10.1016/j.carbon.2015.08.014
    Chen Shujun, Zhang Hongwei, Jiang Xiaoqing, et al. Mechanical properties of electric assisted friction stir welded 2219 aluminum alloy[J]. Journal of Manufacturing Processes, 2019(44): 197 − 206.
    Cheng X, Du L, Yang G, et al. Adaptive robust control of dynamic gas pressure in a vacuum servo system[J]. Vacuum, 2018, 148: 184 − 194. doi: 10.1016/j.vacuum.2017.11.012
  • Related Articles

    [1]HUANG Gang, ZHANG Qingdong, WANG Chunhai, ZHANG Boyang, KONG Ning. Experimental research on the blind hole-drilling method for measuring residual stress of steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 49-59, 80. DOI: 10.12073/j.hjxb.20200403002
    [2]TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125
    [3]HUANG Chaoqun1, LI Huan1, LUO Chuanguang1,2, SONG Yonglun3. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 54-58. DOI: 10.12073/j.hjxb.20150710004
    [4]HONG Haitao, HAN Yongquan, TONG Jiahui, PANG Shigang. Study of arc shape and voltage-current characteristics in variable polarity plasma arc-MIG hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 65-69.
    [5]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36.
    [6]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part I:Theoretical analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 46-50.
    [7]YA Min, DAI Fu-long, LU Jian. Study on Residual Stress of Friction Stir Welding by Moiré Interferometry and Hole-Drilling Method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 53-56.
    [8]Chen Huaining, Chen Liangshan, Dong Xiuzhong. Drilling strains in measuring residual stress with hole-drilling strain-gage method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 276-280.
    [9]Meng Gongge. Reliability and precision of blind hole drilling method for determining high residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 235-238.
    [10]Yu Xunman, Li Qingben, Wang Min. EFFECT OF THE INDUCED DRILLING STRAIN ON THE WELDING RESIDUAL STRESS MEASUREMENT BY BLIND-HOLE METHOD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1986, (4): 195-201.
  • Cited by

    Periodical cited type(3)

    1. 秦子濠,李湘文,郑学军,洪波,李继展,周芙蓉. 磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别. 焊接学报. 2023(05): 84-94+134 . 本站查看
    2. 刘文吉,杨嘉昇,岳建锋,肖宇. 基于P-GMAW摆动电弧传感的窄间隙坡口宽度自适应焊接. 材料科学与工艺. 2023(06): 29-36 .
    3. 钦超,吕学勤,王裕东,瞿艳. 基于激光位移传感器的焊缝检测系统设计. 上海电力学院学报. 2019(02): 171-174 .

    Other cited types(5)

Catalog

    Article views (294) PDF downloads (29) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return