Citation: | QIAO Yuanyuan, ZHANG Minghui, SUN Lungao, MA Haitao, ZHAO Ning. Effects of β-Sn grain orientation and temperature on the interfacial reaction in Cu/SAC305/Cu micro solder joints during aging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 32-41. DOI: 10.12073/j.hjxb.20210930003 |
张知航, 杨健, 杨震, 等. Cu基板粗糙度对SnAgCu无铅钎料润湿性的影响[J]. 焊接学报, 2022, 43(1): 22 − 28.
Zhang Zhihang, Yang Jian, Yang Zhen, et al. Influence of Cu substrate roughness on wettability of SnAgCu lead-free solder[J]. Transactions of the China Welding Institution, 2022, 43(1): 22 − 28.
|
Shen Y A, Hsieh H M, Chen S H, et al. Investigation of FeCoNiCu properties: thermal stability, corrosion behavior, wettability with Sn-3.0Ag-0.5Cu and interlayer formation of multi-element intermetallic compound[J]. Applied Surface Science, 2021, 546: 148931. doi: 10.1016/j.apsusc.2021.148931
|
Lai Y, Hu X, Li Y, et al. Interfacial microstructure evolution and shear strength of Sn0.7Cu-xNi/Cu solder joints[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(13): 11314 − 11324. doi: 10.1007/s10854-018-9219-5
|
Li Y L, Long W F, Hu X W, et al. Interfacial reaction and IMC growth of an ultrasonically soldered Cu/SAC305/Cu structure during isothermal aging[J]. Materials, 2018, 11(1): 84. doi: 10.3390/ma11010084
|
Xu T, Hu X W, Li Y L, et al. The growth behavior of interfacial intermetallic compound between Sn-3.5Ag-0.5Cu solder and Cu substrate under different thermal-aged conditions[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(24): 18515 − 18528. doi: 10.1007/s10854-017-7799-0
|
Zhou Q, Lee T K, Bieler T R. In-situ characterization of solidification and microstructural evolution during interrupted thermal fatigue in SAC305 and SAC105 solder joints using high energy X-ray diffraction and post-mortem EBSD analyzes[J]. Materials Science and Engineering:A, 2021, 802: 140584. doi: 10.1016/j.msea.2020.140584
|
Fu X, Liu M, Xu K X, et al. The in-situ observation of grain rotation and microstructure evolution induced by electromigration in Sn-3.0Ag-0.5Cu solder joints[J]. Materials, 2020, 13(23): 5497. doi: 10.3390/ma13235497
|
Lin Y F, Hao Y C, Ouyang F Y. Improvement of thermomigration resistance in lead-free Sn3.5Ag alloys by Ag interlayer[J]. Journal of Alloys and Compounds, 2020, 847: 156429. doi: 10.1016/j.jallcom.2020.156429
|
Hsu W N, Ouyang F Y. Effects of anisotropic β-Sn alloys on Cu diffusion under a temperature gradient[J]. Acta Materialia, 2014, 81: 141 − 150. doi: 10.1016/j.actamat.2014.08.029
|
Huang M L, Zhao J F, Zhang Z J, et al. Role of diffusion anisotropy in β-Sn in microstructural evolution of Sn-3.0Ag-0.5Cu flip chip bumps undergoing electromigration[J]. Acta Materialia, 2015, 100: 98 − 106. doi: 10.1016/j.actamat.2015.08.037
|
Kelly M B, Niverty S, Chawla N. Four dimensional (4D) microstructural evolution of Cu6Sn5 intermetallic and voids under electromigration in bi-crystal pure Sn solder joints[J]. Acta Materialia, 2020, 189: 118 − 128. doi: 10.1016/j.actamat.2020.02.052
|
Kelly M B, Niverty S, Chawla N. Electromigration in bi-crystal pure Sn solder joints: elucidating the role of grain orientation[J]. Journal of Alloys and Compounds, 2020, 818: 152918. doi: 10.1016/j.jallcom.2019.152918
|
Huang M L, Zhao J F, Zhang Z J, et al. Dominant effect of high anisotropy in β-Sn grain on electromigration induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect[J]. Journal of Alloys and Compounds, 2016, 678: 370 − 374. doi: 10.1016/j.jallcom.2016.04.024
|
Shen Y A, Chen C. Effect of Sn grain orientation on formation of Cu6Sn5 intermetallic compounds during electromigration[J]. Scripta Materialia, 2017, 128: 6 − 9. doi: 10.1016/j.scriptamat.2016.09.028
|
Xu K X, Fu X, Wang X J, et al. The effect of grain orientation of β-Sn on Copper pillar solder joints during electromigration[J]. Materials, 2022, 15(1): 108.
|
Huang M L, Yang F. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate[J]. Scientific Reports, 2014, 4: 1 − 9.
|
Lee T Y, Choi W J, Tu K N, et al. Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu[J]. Journal of Materials Research, 2002, 17(2): 291 − 301. doi: 10.1557/JMR.2002.0042
|
Hsiao H Y, Liu C M, Lin H W, et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper[J]. Science, 2012, 336: 1007 − 1010. doi: 10.1126/science.1216511
|
Wang H Z, Hu X W, Jiang X X. Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0Ag-0.5Cu composite solder joints[J]. Materials Characterization, 2020, 163: 110287. doi: 10.1016/j.matchar.2020.110287
|
Qiao Y Y, Ma H T, Yu F Y, et al. Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu-Sn IMCs under temperature gradient[J]. Acta Materialia, 2021, 217: 117168. doi: 10.1016/j.actamat.2021.117168
|
[1] | LAN Hu, ZHANG Huajun, CHEN Ajing, CHEN Shanben. Numerical simulation on dynamic process and thermal physical properties of narrow gap MAG vertical welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 77-82. |
[2] | WANG Lei, HUANG Songtao, JIAO Xiangdong, GU Xiaoman. Stability of hyperbaric pulsed MAG welding arc and its compensation by higher arc voltage[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 63-66. |
[3] | ZHENG Senmu, GAO Hongming, LIU Xin. Arc behavior of MAG welding with strip electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 97-100. |
[4] | LI Jing, LI Fang, ZHU Wei, LIAO Jianxiong, QIAN Luhong. A new seam location extraction method for pipe-line backing welding of MAG based on passive optical vision sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 69-72. |
[5] | LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28. |
[6] | WEN Yuanmei, HUANG Shisheng, WU Kaiyuan, LAO Zhengping. Welding behavior of two current phase relations for twin-wire pulsed MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 59-62,66. |
[7] | WANG Jia-you, GUO Hong-bin, YANG Feng. A new rotating arc process for narrow gap MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 65-67. |
[8] | BAO Ye-feng, ZHOU Yun, WU Yi-xiong, LOU Song-nian. Instant unstable phenomenon of rotational spray transfer in high-current MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 73-76. |
[9] | Sun Lunqiang, Wu Lin. A Regression Model of Weld Bead Geometry for Pulsed MAG Welding in Multipositions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (4): 249-257. |
[10] | Jiang Weiyan, Zhang Jiuhai, Zhao Chongyi. Behaviors of metal transfer in pulsed MIG(MAG) welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (1): 50-58. |