Advanced Search
YANG Yicheng, DU Bing, HUANG Jihua, XU Kai, CHEN Jian, HUANG Ruisheng. Spatial thermal field distribution characteristics of hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 63-67. DOI: 10.12073/j.hjxb.20210908001
Citation: YANG Yicheng, DU Bing, HUANG Jihua, XU Kai, CHEN Jian, HUANG Ruisheng. Spatial thermal field distribution characteristics of hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 63-67. DOI: 10.12073/j.hjxb.20210908001

Spatial thermal field distribution characteristics of hollow tungsten arc welding with coaxial filler wire

More Information
  • Received Date: September 07, 2021
  • Available Online: April 06, 2022
  • The source of welding wire melting heat in the process of hollow tungsten arc welding with coaxial wire feeding is systematically studied by using the method of theoretical modeling and experiment. The results show that the analysis results of the theoretical model based on magnetohydrodynamics are highly consistent with the actual situation. Under the combined action of high temperature arc heat radiation and cathode heat conduction, the gradient temperature zone formed in the inner hole of cathode will preheat the welding wire to a certain extent. The temperature near the geometric center on the central axis of annular hollow tungsten arc is the highest, and the temperature is up to 13 700 K, when the welding current is 400 A. The potential is equal after the droplet contacts with the liquid molten pool. Under the action of the principle of minimum voltage, the anode action area of some high-temperature arc will change from the liquid molten pool to the surface of the welding wire. At the same time, some welding current will flow through the welding wire, and the resistance heat formed is one of the main reasons for the high-efficiency fuse. The results of droplet transfer characteristics analysis show that hollow tungsten arc welding with coaxial filler wire has high process stability and is a new welding method with great development prospect.
  • 徐良, 欧阳凯, 海锋. K-TIG焊接动态过程及组织和性能分析[J]. 焊接学报, 2020, 41(8): 73 − 77. doi: 10.12073/j.hjxb.20200706005

    Xu Liang, Ou Yangkai, Yang Haifeng, et al. Study on K-TIG welding process and properties of Q235 steel[J]. Transactions of the China Welding Institution, 2020, 41(8): 73 − 77. doi: 10.12073/j.hjxb.20200706005
    Spaniol E, Ungethüm T, Trautmann M, et al. Development of a novel TIG hot-wire process for wire and arc additive manufacturing[J]. Welding in the World, 2020, 64: 1329 − 1340. doi: 10.1007/s40194-020-00871-w
    Ungethüm T, Spaniol E, Hertel M, et al. Analysis of metal transfer and weld geometry in hot-wire GTAW with indirect resistive heating[J]. Welding in the World, 2020, 64: 2109 − 2117. doi: 10.1007/s40194-020-00986-0
    杨义成, 陈健, 黄瑞生, 等. 空心钨极焊接关键技术问题及发展现状[J]. 焊接, 2021(5): 1 − 8.

    Yang Yicheng, Chen Jian, Huang Ruisheng, et al. Key technicalproblem and devclopmcnt status of hollowtungstcn arcwelding[J]. Welding & Joining, 2021(5): 1 − 8.
    Tashiro S, Tanaka M, Nakatani M, et al. Numerical analysis of energy source properties of hollow cathode arc[J]. Surface and Coatings Technology, 2007, 201(9-11): 5431 − 5434. doi: 10.1016/j.surfcoat.2006.07.158
    Nerovnyi V M, Khakhalev A D. Hollow cathode arc discharge as an effective energy source for welding processes in vacuum[J]. Journal of Physics D:Applied Physics, 2008, 41(3): 035201. doi: 10.1088/0022-3727/41/3/035201
    Chen S, Yan Z, Jiang F, et al. The pressure distribution of hollow cathode centered negative pressure arc[J]. Journal of Manufacturing Processes, 2016, 23: 21 − 28. doi: 10.1016/j.jmapro.2016.05.016
    徐国建, 刘占起, 杭争翔, 等. 半裂式空心钨极同轴送丝惰性气体保护焊焊枪: CN207289135U [P]. 2018-05-01.

    Xu Guojian, Liu Zhanqi, Hang Zhengxiang, et al. Semi split hollow tungsten electrode welding gun with coaxial feeding wire in inert gas shielding: CN207289135U [P]. 2018-05-01.
    苗玉刚, 马照伟, 赵慧慧, 等. 一种基于空心钨极分流的熔化极电弧焊接装置及方法: CN109079291A [P]. 2018-12-25.

    Miao Yugang, Ma Zhaowei, Zhao Huihui, et al. A shielding gas arc welding device and method based on hollow tungsten electrode shunt: CN109079291A [P]. 2018-12-25.
    胡庆贤, 唐峰, 王晓丽, 等. 一种空心钨极高深熔TIG填丝焊接厚板的焊接方法: CN109332858A [P]. 2019-02-15.

    Hu Qingxian,Tang Feng, Wang Xiaoli, et al. A thick plate weld-ing method using hollow tungsten electrode high penetration with filling wire: CN109332858A [P]. 2019-02-15.
    雷正, 朱宗涛, 李远星, 等. 空心钨极TIG焊电弧特性数值模拟[J]. 焊接学报, 2021, 42(9): 9 − 14. doi: 10.12073/j.hjxb.20210131003

    Lei Zheng, Zhu Zongtao, Li Yuanxing, et al. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. Transactions of the China Welding Institution, 2021, 42(9): 9 − 14. doi: 10.12073/j.hjxb.20210131003
  • Related Articles

    [1]CAO Runping, HAN Yongquan, LIU Xiaohu, HONG Haitao, HAN Jiao. Effect of rare earth Ce on arc and droplet transfer behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 95-102. DOI: 10.12073/j.hjxb.20231109001
    [2]HU Qingsong, YAN Zhaoyang, ZHANG Pengtian, CHEN Shujun. Arc behavior and droplet transfer in self-adaptive shunt alternating arc WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 41-46. DOI: 10.12073/j.hjxb.20230309003
    [3]YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001
    [4]ZHOU Xiaochen1, LI Huan1, SONG Chunguang2, ZHANG Yuchang3. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 45-48. DOI: 10.12073/j.hjxb.20150609001
    [5]ZHU Xiaoyang, LI Huan, HUANG Chaoqun, YANG Ke, NI Yanbing, WANG Guodong. Analysis of droplet transfer and weld appearance in pulsed wire feeding MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 59-63.
    [6]XIE Shengmian, WU Kaiyuan, WEN Yuanmei, GE Weiqing, HUANG Shisheng. Effects of pulse frequency on TCGMAW droplet transfer modes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 69-72.
    [7]LI Fang, HUA Xueming, WANG Weibin, WU Yixiong. Modeling of droplet transfer electrical characteristics in pulsed gas melted arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 97-100.
    [8]LIU Gang, FENG Yun, LI Jun-yue, FAN Rong-huan. Arc spectrum signals of droplet spray transfer in MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 40-44.
    [9]YANG Yun-qiang, ZHANG Xiao-qi, LI Jun-yue, LI Huan. Selection of droplet transfer specific spectrum window[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 14-18.
    [10]YANG Yun-qiang, LI Jun-yue, HU Sheng-gang, LIU Gang, LI Huan. The Characteristic Spectral Information of Droplet Transfer in Pulsed MIG Welding and It's Applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 36-38.

Catalog

    Article views (279) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return