Advanced Search
YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001
Citation: YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001

Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire

More Information
  • Received Date: September 12, 2021
  • Available Online: April 10, 2022
  • The interaction between welding wire and arc (wire-arc) is the key factor to determine the welding quality of hollow tungsten arc welding. Firstly, the shape of hollow tungsten electrode arc and solid tungsten electrode arc, and their influence on the weld forming characteristics are observed and analyzed by high-speed camera. Then the stress model of fuse process is constructed, the dynamic characteristics of droplet formation and transition process in coaxial wire filling welding are systematically analyzed. The research results show that the surface irradiation area of hollow tungsten electrode is larger than that of solid tungsten electrode, and the weld formation is stable under the high welding current. At the stage of droplet formation, the droplet at the end of the welding wire is in static equilibrium, and it cannot spontaneously transition from the end of the welding wire to the molten pool under the action of large surface tension. In droplet transition stage, part of the welding current flows through the welding wire, producing electromagnetic shrinkage force, causing the droplet swing between the welding wire and the molten pool.
  • 冷雪松, 张广军, 吴林. 双钨极氩弧焊耦合电弧压力分析[J]. 焊接学报, 2006, 27(9): 13 − 16. doi: 10.3321/j.issn:0253-360X.2006.09.004

    Leng Xuesong, Zhang Guangjun, Wu Lin. Analysis of twin-electrode TIG coupled arc pressure[J]. Transactions of the China Welding Institution, 2006, 27(9): 13 − 16. doi: 10.3321/j.issn:0253-360X.2006.09.004
    周灿丰, 焦向东, 薛龙, 等. 以空气为舱内加压气体的钨极氩弧焊接[J]. 焊接学报, 2007, 28(2): 5 − 8. doi: 10.3321/j.issn:0253-360X.2007.02.002

    Zhou Canfeng, Jiao Xiangdong, Xue Long, et al. Gas tungsten arc welding using air as chamber gas[J]. Transactions of the China Welding Institution, 2007, 28(2): 5 − 8. doi: 10.3321/j.issn:0253-360X.2007.02.002
    张晨曙, 李水涛, 晏建武, 等. 铸造高温合金精铸零部件的补焊研究进展[J]. 材料导报, 2012, 26(12): 104 − 106. doi: 10.3969/j.issn.1005-023X.2012.23.022

    Zhang Chengshu, Li Shuitao, Yan Jianwu, et al. Research progress on repairing-welding for superalloy parts in precision casting[J]. Materials Reports, 2012, 26(12): 104 − 106. doi: 10.3969/j.issn.1005-023X.2012.23.022
    Pea N R, Vazquez L, Arruti E, et al. Wire and arc additive manufacturing: a comparison between CMT and Top-TIG processes applied to stainless steel[J]. Welding in the World, 2018, 62: 1 − 4. doi: 10.1007/s40194-017-0515-0
    Wu D, Huang J, Kong L, et al. Coupled mechanisms of arc, weld pool and weld microstructures in high speed tandem TIG welding[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119641. doi: 10.1016/j.ijheatmasstransfer.2020.119641
    Cheng Z, Liu H, Huang J, et al. MIG-TIG double-sided arc welding of copper-stainless steel using different filler metals[J]. Journal of Manufacturing Processes, 2020, 55: 208 − 219. doi: 10.1016/j.jmapro.2020.04.013
    Rose S, Mahrle A, Schnick M, et al. Plasma welding with a superimposed coaxial fiber laser beam[J]. Welding in the World, 2013, 57(6): 857 − 865. doi: 10.1007/s40194-013-0079-6
    Mahrle A, Rose S, Schnick M, et al. Improvements of the welding performance of plasma arcs by a superimposed fibre laser beam[J]. Proceedings of Spie the International Society for Optical Engineering, 2012, 8239: 82390D.
    Liu S, Liu Z, Zhao X, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229 − 237. doi: 10.1016/j.jmapro.2020.02.027
    李京洋, 李伟, 焦向东, 等. 304不锈钢激光K-TIG复合焊接电弧特性的研究[J]. 电焊机, 2020, 50(4): 30 − 35.

    Li Jingyang, Li Wei, Jiao Xiangdong, et al. Study on arc electrproperties of laser K-TIG hybrid welding of 304 stainless steel[J]. Electric Welding Machine, 2020, 50(4): 30 − 35.
    Spaniol E, Ungethüm T, Trautmann M, et al. Development of a novel TIG hot-wire process for wire and arc additive manufacturing[J]. Welding in the World, 2020, 64(8): 1329 − 1340.
    杨义成, 陈健, 黄瑞生, 等. 空心钨极焊接关键技术问题及发展现状[J]. 焊接, 2021(5): 1 − 8.

    Yang Yicheng, Chen Jian, Huang Ruisheng, et al. Key technical problem and development status of hollow tungsten arc welding[J]. Welding & Joining, 2021(5): 1 − 8.
    杨义成, 黄瑞生, 孙谦, 等. 激光送粉增材制造光粉交互作用机制分析[J]. 焊接学报, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    Yang Yicheng, Huang Ruisheng, Sun Qian et al. Mechanism analysis of interaction between laser and particles in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290
    杨义成. 燃气轮机叶片激光增材修复基础研究[D]. 北京: 机械科学研究总院, 2017.

    Yang Yicheng. Basic research of repairing of gas turbine blade by laser additive manufacturing technology[D]. Beijing: China Academy of Machinery Science and Technology Group Limited Company, 2017.
    朱胜, 杜文博. 电弧增材再制造技术研究进展[J]. 电焊机, 2020, 50(9): 251 − 255. doi: 10.7512/j.issn.1001-2303.2020.09.28

    Zhu Sheng, Du Wenbo. State-of-art of wire arc additive remanufacturing technology[J]. Electric Welding Machine, 2020, 50(9): 251 − 255. doi: 10.7512/j.issn.1001-2303.2020.09.28
    Parvaresh B, Miresmaeili R, Yazdizadeh M. Characterization of wire arc additive manufactured products: A comparison between as-deposited and inter-layer cold worked specimens[J]. Journal of Manufacturing Processes, 2020, 57: 61 − 71.
    魏仕勇, 彭文屹, 陈斌, 等. 等离子弧粉末堆焊熔覆材料的研究现状与进展[J]. 材料导报, 2020, 34(9): 9143 − 9151. doi: 10.11896/cldb.18120076

    Wei Shiyong, Peng Wenyi, Chen Bin, et al. Current statusand progress of cladding materials for plasma arc powder surfacing[J]. Materials Reports, 2020, 34(9): 9143 − 9151. doi: 10.11896/cldb.18120076
    胡庆贤, 唐峰, 王晓丽, 等. 一种气-磁联合调控空心钨极TOPTIG焊焊接方法: CN109365958A [P]. 2019-02-22.

    Hu Qingxian, Tang Feng, Wang Xiaoli, et al. A gas-magnetic combine control hollow tungsten electrode TOPTIG welding method: CN109365958A [P]. 2019-02-22.
    Chen S, Yan Z, Jiang F, et al. The pressure distribution of hollow cathode centered negative pressure arc[J]. Journal of Manufacturing Processes, 2016, 23: 21 − 28. doi: 10.1016/j.jmapro.2016.05.016
    陈树君, 王建新, 蒋凡, 等. 空心钨极中心负压电弧基础特性研究[J]. 机械工程学报, 2016, 52(2): 7 − 12.

    Chen Shujun, Wang Jianxin, Jiang Fan, et al. Research of hollowtungsten central negative pressure arc welding characteristic[J]. Journal of Mechanical Engineering, 2016, 52(2): 7 − 12.
    杨义成, 杜兵, 黄继华, 等. 空心钨极同轴填丝焊空间热场分布特征[J]. 焊接学报, 2022, 43(3): 63 − 67.

    Yang Yicheng, Du Bing, Huang Jihua, et al. Spatial thermal field distrbution characteristics of hollow tungsten arc welding with coaxial filler wire[J]. Transactions of the China Welding Institution, 2022, 43(3): 63 − 67.
    雷正, 朱宗涛, 李远星, 等. 空心钨极TIG焊电弧特性数值模拟[J]. 焊接学报, 2021, 42(9): 9 − 14.

    Lei Zheng, Zhu Zongtao Li Yuanxing, et al. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. Transactions of the China Welding Institution, 2021, 42(9): 9 − 14.
    陈树君, 盛珊, 蒋凡, 等. 空心钨极中心负压电弧的物理性能[J]. 焊接学报, 2017, 38(12): 1 − 4.

    Chen Shujun, Sheng Shan, Jiang Fan, et al. Physical properties of hollow tungsten central negative pressure arc[J]. Transactions of the China Welding Institution, 2017, 38(12): 1 − 4.
    Tashiro S, Tanaka M, Nakatani M, et al. Numerical analysis of energy source properties of hollow cathode arc[J]. Surface and Coatings Technology, 2007, 201(9-11): 5431 − 5434. doi: 10.1016/j.surfcoat.2006.07.158
    Nerovnyi V M, Khakhalev A D. Hollow cathode arc discharge as an effective energy source for welding processes in vacuum[J]. Journal of Physics D:Applied Physics, 2008, 41(3): 035201. doi: 10.1088/0022-3727/41/3/035201
    王树保, 张海宽, 冷雪松, 等. 双钨极氩弧焊工艺及焊缝成形机理分析[J]. 焊接学报, 2007, 28(2): 21 − 24. doi: 10.3321/j.issn:0253-360X.2007.02.006

    Wang Shubao, Zhang Haikuan, Leng Xuesong, et al. Twin-electrode tig welding procedure and mechanism of weld formation[J]. Transactions of the China Welding Institution, 2007, 28(2): 21 − 24. doi: 10.3321/j.issn:0253-360X.2007.02.006
  • Related Articles

    [1]LIU Xudong, SA Zicheng, FENG Jiayun, LI Haozhe, TIAN Yanhong. The Development Status On Advanced Packaging Copper Pillar Bump Interconnection Technology and Reliability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240718001
    [2]YANG Dongsheng, ZHANG He, FENG Jiayun, SA Zicheng, WANG Chenxi, TIAN Yanhong. Research progress on micro/nano joining technologies and failure behaviors in electronic packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 126-136. DOI: 10.12073/j.hjxb.20220702003
    [3]SUN Lei, ZHANG Yi, CHEN Minghe, ZHANG Liang, MIAO Naiming. Finite element analysis of solder joint reliability of 3D packaging chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 49-53. DOI: 10.12073/j.hjxb.20201021002
    [4]YANG Hong, LI Yulong, DONG Yangping, CUI Qingbo. Ultrasonic welding packaging of FBG and its bending sensing characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 69-75. DOI: 10.12073/j.hjxb.2019400211
    [5]HAN Lishuai, HUANG Chunyue, LIANG Ying, KUANG Bing, HUANG Genxin. Analysis of stress strain and shape size optimization of 3D micro-scale CSP solder joints in random vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 64-70. DOI: 10.12073/j.hjxb.2019400156
    [6]XIONG Mingyue1, ZHANG Liang1,2, LIU Zhiquan2, YANG Fan1, ZHONG Sujuan3, MA Jia3, BAO Li3. Structure optimization design of CSP device based on Taguchi method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 51-54. DOI: 10.12073/j.hjxb.2018390121
    [7]CUI Haipo, CHENG Enqing. Random vibration analysis of different electronic packaging structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 91-94. DOI: 10.12073/j.hjxb.20150606002
    [8]NAN Qiuming, WU Haoying, LI Sheng. Metallization packaging method for FBG vibration sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 17-20.
    [9]WANG Bo, MO Liping, WU Fengshun, XIA Weisheng, WU Yiping. Microstructure of solder joints with micron stand-off height in electronic packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 25-28.
    [10]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
  • Cited by

    Periodical cited type(1)

    1. 蒋宝,徐富家,杨义成,聂鑫,宋扬,刘孔丰. 万瓦级激光-电弧复合穿透焊接成形缺陷研究. 电焊机. 2022(10): 15-22 .

    Other cited types(1)

Catalog

    Article views (366) PDF downloads (35) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return