Citation: | HUO Guangrui, XUE Gang, HE Zhitao, NIU Jicheng. Analysis of droplet explosion in pulsed GMAW with high strength austenitic filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 107-112. DOI: 10.12073/j.hjxb.20210616001 |
Qulgley M B C, Webster J M. Observations of exploding droplets in pulsed-arc GMA welding[J]. Welding Journal, 1971(11): 461 − 466.
|
Liu S, Siewert T A. Metal transfer in gas metal arc welding: droplet rate[J]. Welding Journal, 1989(2): 52 − 58.
|
Reiichi Suzuki, Ryu Kakai. Expansion of “MX-MIG process” as pure argon gas shielded welding method-for carbon steel[J]. Kobelco Technology Review, 2013, 32(10): 24 − 32.
|
Lucas W, Amin M. Effect of wire composition in spray transfer mild steel MIG welding[J]. Metal Construction, 1975(2): 77.
|
文元美, 黄石生, 薛家祥, 等. 脉冲MIG焊不稳定过渡过程的观察与分析[J]. 焊接学报, 2008, 29(4): 13 − 17. doi: 10.3321/j.issn:0253-360X.2008.04.004
Wen Yuanmei, Huang Shisheng, Xue Jiaxiang, et al. Observation and analysis of unstable metal transfer process in pulsed MIG welding[J]. Transactions of the China Welding Institution, 2008, 29(4): 13 − 17. doi: 10.3321/j.issn:0253-360X.2008.04.004
|
Woods R A. Metal transfer in aluminum alloys[J]. Welding Journal, 1980(2): 59 − 66.
|
Reisgen U, Mokrov O. Task of volunerical evaporation and behaviour of droplets in pulsed MIG welding of AlMg alloys[J]. Weld World, 2013, 57: 507 − 514. doi: 10.1007/s40194-013-0044-4
|
Wang J, Nishimura H, Katayma S. Evaporation phenomena of magnesium from droplet at welding wire tip in pulsed MIG arc welding of aluminum alloys[J]. Science Technology Weld Join 2011, 16(5): 418-425.
|
明珠, 王克鸿, 王伟, 等. 焊丝成分对高氮不锈钢GMAW稳定性及熔滴过渡行为的影响[J]. 焊接学报, 2018, 39(7): 24 − 28.
Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. Transactions of the China Welding Institution, 2018, 39(7): 24 − 28.
|
Yang Dongqing, Xiong Hanying, Huang Yong, et al. Droplet transfer behavior and weld formation of gas metal arc welding for high nitrogen austenitic stainless steel[J]. Journal of Manufacturing Processes, 2021, 65: 491 − 501. doi: 10.1016/j.jmapro.2021.03.048
|
Wilhelm G, Gött G, Schöpp H, et al. Study of the welding gas influence on a controlled short-arc GMAW process by optical emission spectroscopy[J]. Journal of Physics D:Applied Physics, 2010, 43: 1 − 9.
|
Haelsig A, Kusch M, Mayr P. Calorimetric analyses of the comprehensive heat flow for gas metal arc welding[J]. Welding in the World, 2015, 59(2): 191 − 199. doi: 10.1007/s40194-014-0193-0
|
Sarizam Mamat, Titinan Methong, Shinichi Tashiro, et al. Droplet temperature measurement in metal inert gas welding process by using two color measurement method[J]. Journal of the Japan Welding Society, 2017, 35(2): 160 − 164. doi: 10.2207/qjjws.35.160s
|
Soderstrom E J, Scott K M, Mendez P F. Calorimetric measurement of droplet temperature in GMAW[J]. Welding Journal, 2011, 90(4): 77 − 84.
|
陈新民. 金属中气体分析的热力学基础[J]. 中南矿冶学院学报, 1979(1): 1 − 14.
Chen Xinmin. The thermodynamic basis of gas analysis in metal[J]. Journal of Central South University(Science and Technology), 1979(1): 1 − 14.
|
Dimitrov V I, Jekov K. Prediction of the solubility of nitrogen in steels obtained by pressurised electroslag remelting process[J]. Computational Materials Science, 1999, 15(4): 400 − 410. doi: 10.1016/S0927-0256(99)00018-X
|
Jiang Zhouhua, Li Huabing, Shen Minghui, et al. Manufacture of nickel free high nitrogen austenitic stainless steel[C]//Proceedings of International Conference on High Nitrogen Steels. Jiuzhaigou, China, 2006: 372-380.
|
[1] | YIN Chi, GUO Yonghuan, FAN Xiying, ZHU Zhiwei, SONG Haoxuan, ZHANG Liang. Multi-objective optimization of aluminum copper laser welding parameters based on BKA-GBRT and MOSPO[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 140-144. DOI: 10.12073/j.hjxb.20240721002 |
[2] | LI Jiahao, SHU Linsen, HENG Zhao, WU Han. Multi-objective optimization of laser cladding parameters based on PCA and RSM-DE algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 67-73. DOI: 10.12073/j.hjxb.20220310001 |
[3] | ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001 |
[4] | HONG Bo, LIU Long, WANG Tao. Prediction in longeron automatic welding of generalized regression neural network by ameliorated fruit flies optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 73-76. |
[5] | ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13. |
[6] | GAO Xiangdong, LIU Yingying, XIAO Zhenlin, CHEN Xiaohui. Analysis of high-power disk laser welding status based on multi-sensor information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 31-34,88. |
[7] | GUO Haibin, LI Guizhong. A double-characteristic fusion-control algorithm for resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 105-108. |
[8] | SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108. |
[9] | CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32. |
[10] | CUI Xiaofang, MA Jun, ZHAO Haiyan, ZHAO Wenzhong, MENG Kai. Optimization of welding sequences of box-like structure based on a genetic algorithm method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 5-8. |
1. |
赵衍华,张粟泓,王非凡,郝云飞,宋建岭,孙世烜,王国庆. 搅拌摩擦焊接与加工技术进展. 航天制造技术. 2025(01): 1-25 .
![]() | |
2. |
李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 .
![]() |